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Abstract—Multipurpose Internet Mail Extensions (MIME) 

provide a simple way to describe the type of data sent and its use. 

Email and the web use MIME extensively to carry different files. 

The Hypertext Transfer protocol (HTTP) is universally 

recognized as a straightforward method to carry MIME objects 

as binary streams. Taking MIME and HTTP as a starting point, 

and adopting the well-understood need for different ‘convergence 

layers’ to carry HTTP in different challenged environments 

where TCP may not be suitable, this paper outlines work in 

progress to run HTTP over different transports, and how this 

can be used to create a simple, yet powerful, approach to relaying 

content in delay- and disruption-tolerant networks (DTNs).  
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I.  INTRODUCTION 

The most popular uses of communication on the Internet – 
email, the web and the applications built using web 
technologies – owe their success to their ability to easily 
identify files and move copies around. This ability was given to 
email with MIME attachments [1], and the web and HTTP [2] 
reuse MIME with great success in parallel, with migration of 
MIME content between the two in the web so that e.g. web 
content can also be sent and handled by mail agents [Fig. 1]. 

As networking expands from fixed computers into the 
‘edge cases’ of ad-hoc networks, or ‘delay- and disruption-
tolerant networks,’ whose requirements for routing and 
transport are more demanding than those of the terrestrial 
Internet, the ability to access, move and identify files still 
matters; MIME can still fill a useful role in this domain, and 
identifying content for use with applications still matters. 

 In these challenged networks where permanent end-to-end 
connectivity is never guaranteed, different transport protocols, 
other than the Transmission Control Protocol (TCP) of the 
traditional Internet [3], are needed for local network conditions. 
When TCP fails due to long delays or disruptions in end-to-end 
connectivity, much of the traditional Internet infrastructure that 
relies on TCP will also fail to work. 

However, HTTP is intended to be independent of TCP [2] 
and can still be used as a ‘shim layer’ to the local transport, 
providing a consistent interface for high-level applications to 
move and identify files with MIME via a hop-by-hop object 
exchange protocol. 

We describe ongoing efforts to demonstrate the independence 
of HTTP from TCP by using HTTP over other transport 
protocols. These efforts move towards making HTTP a layer in 
its own right in the network stack. Using transport protocols 
suitable for DTN environments makes HTTP over those 
transports more useful for challenged networks. We leverage 
this by proposing simple additions to HTTP to create an 
‘HTTP-DTN’ variant that can be used for delay- and 
disruption-tolerant networking. 

II. DECOUPLING HTTP FROM TCP 

HTTP is specified as a generic, stateless application level 
protocol independent of any transport protocol [2]. It can be 
thought of a session layer, running over a transport layer 
providing reliable delivery of the HTTP stream. Desire to 
separate HTTP from its traditional transport of TCP is 
increasing. For example, the Stream Control Transmission 
Protocol (SCTP) [4] offers a feature-filled superset of TCP’s 
capabilities, and can carry HTTP [5]. There are many 
networking environments where TCP is not suitable, or is not 
implemented in small embedded computers, used for e.g. 
sensor networks, yet HTTP’s simple text headers can still be 
used to identify, and to transfer, data [6]. For local network 
conditions where TCP or an equivalent such as SCTP is not 
suitable, an alternate transport layer with new behaviour, such 
as Saratoga [7], or even an HDLC bitstream, can replace TCP. 

HTTP requires a minimum of reliable streaming that can be 
used to provide ordered delivery to the application; it is up to 
the local transport layer in the local subnetwork to provide or 
enhance that reliable streaming. For the examples given above, 
TCP or SCTP are used to carry HTTP over the congestion-
sensitive public Internet, while Saratoga might be used across 
dedicated private links where congestion is not a concern. 
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Figure 1.  MIME use in the web and email 
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Figure 2.  the protocol waists in the hourglass 
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Figure 3.  HTTP-DTN transfers end-to-end 
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Figure 4.  Internal operation of a HTTP-DTN node 

At the packet level, IP, the Internet Protocol, has been 
described as 'the waist in the hourglass' [8] – what is above and 
interfaces with IP can be changed in a modular network stack, 
what is below and interfaces with IP can be changed, but 
provided the new elements continue to interface to and work 
with common paradigm of IP, the hourglass remains complete 
and the stack remains functional. Here, IP is a network waist. 

At the file/object level, HTTP and MIME together form 
another session waist in the hourglass [Fig. 2]. HTTP is well-
understood by applications, just as IP is well-understood by 
networks, encouraging its use. The applications can vary. The 
protocol providing the transport stream can be changed to suit 
local conditions, just as the link protocol is changed. 

Being identified as a ‘protocol waist’ in this way indicates 
that HTTP can be regarded as a separate layer in the network 
stack in its own right. Given the prevalence of IP in many 
networks, it is likely that two popular waists (the popular layers 
that other layers interface to) exist: these are IP and HTTP. 

These can be used separately, but will most commonly be used 
together. The transport protocol and link protocol for the 
physical environment that IP and HTTP are used over vary 
more, as they depend on local conditions and requirements. 

MIME and HTTP are grouped together here because 
MIME use for HTTP is described as part of the HTTP/1.1 
specification [2], rather than being entirely consistent across 
both email, which MIME was first developed for, and the web. 

III. ADAPTING HTTP FOR DTN 

A simple approach leverages existing standards, using the 
HTTP as a transport-layer-independent ‘session layer’ between 
each two communicating delay-tolerant networking (DTN) 
nodes [9]. Rather than an end-to-end communication across a 
path as in the traditional Internet, this use of HTTP is hop-by-
hop between communicating peers [Fig. 3]. 

HTTP runs over its ‘convergence layer’ – that is, a transport 
layer – suitable for local network conditions between each 
HTTP-capable node. New Content-Source: and Content-
Destination: headers are added to HTTP. These provide late-
binding endpoint identifiers, as the local Host: information is 
now only between peer HTTP nodes on the local subnet. 

It is worth noting that Content-*: headers are treated 
specially by HTTP. HTTP servers must reject transfers with 
unknown Content- headers. Adding these two new headers 
effectively creates a separate DTN network that will not 
interact with or affect existing traditional web use of HTTP, as 
these ‘HTTP-DTN’ queries will be rejected by traditional 
HTTP servers unfamiliar with these headers. 

Internal operation of the DTN node is shown [Fig 4]. We 
assume that an epidemic DTN routing protocol (RP) is used to 
manage connectivity [10]. Local applications interact with the 
HTTP server and its cache to store and retrieve MIME objects 
either by controlling simple HTTP PUT/GET or some other 
content management, e.g. WebDAV, SOAP, or AXL (1). 
Neighbour discovery and authentication tells the DTN RP of a 
new neighbour (2). The RP tells the content manager (3). An 
HTTP-DTN session with the neighbour exchanges data in 
caches. MIME objects can be pulled (GET or HEAD) or 
pushed (PUT or POST) from one node to another (4). Any 
received MIME objects with Content-Destination: matching 
the local node are handed to local applications, if any (5), while 
other objects are cached for the next hop. A series of separate 
HTTP transfers between peer nodes completes the end-to-end 
delivery of objects for distant nodes. The nodes act as caches of 
MIME content in transit between relaying HTTP transfers. 
This store-and-forward caching model differs from the 
intercept-driven proxy caching used in the World-Wide Web. 

HTTP does not contain timers itself, so using HTTP with 
long-delay networks is possible. HTTP can work over 
extremely long distances provided that the transport protocol 
underneath it tolerates those distances; neither TCP nor SCTP 
are likely to be suitable. Supporting long distances requires 
features from HTTP/1.1: persistence to reuse open transport 
connections, pipelining to send multiple items without first 
receiving a response, and unidirectional PUTs to be able to 
send data blindly without acknowledgement if required.  



IV. NAMING AND ADDRESSING 

Delay and disruption-tolerant ad-hoc networks with 
mobility and without end-to-end connectivity pose challenges 
for routing, naming and addressing. Resolving named 
destinations can no longer be done once early with a lookup, as 
in the Domain Name System (DNS), but needs to be done by 
every caching node to determine where the destination might 
be and the current likeliest path towards it. 

As a result, there is a need for applications to understand 
new addressing and namespace paradigms that can be used 
with HTTP. Fortunately, as HTTP’s headers are in text, 
replacing textual IP or DNS addresses with other late-binding 
addresses, for other namespaces and routing, is straightforward. 

Allowing an application to explicitly specify the desired 
transport and interface to use in the URI for a program to 
interpret when executing HTTP GETs or PUTs is also useful – 
particularly when a choice of mechanisms and interfaces are 
available and a selection must be made, and infrastructure such 
as DNS is not present so cannot be queried for advice [10]. 

V. A WORKED EXAMPLE OF HTTP-DTN USE 

This summarises an HTTP-DTN file delivery, based on the ad-
hoc temporary connections between nodes shown previously 
[Fig. 3]. This simplistic example is hypothetical, but is 
illustrates use of different technologies in a modular fashion. 

Here there are three separate, disjoint HTTP/1.1 transfers, 
with their own reliable transport streams with control loops and 
acknowledgements, to describe in sequence. These examples 
are deliberately given illustrating the different ways that 
HTTP-DTN can transfer data. 

An application at Node 1 places content into its local 
storage, for delivery to Node 4. Delivery is via Nodes 2 and 3, 
where the content is stored along with metadata on original 
source, final destination, timestamp, etc. before being relayed 
onwards. 

The numbers given to the nodes are placeholders for 
locally-understood textual representations of addresses. Those 
addresses would be understood by the local DTN routing 
protocol running at each node, with separate exchanges of 
routing information and forwarding decisions that are not 
described here. These HTTP transfers are now described. 

A. Transfer from Node 1 to Node 2 

A wireless point-to-point link is established, using IPv4 
addresses in the reserved 169.254.0.0/16 subnet [12]. 
Addresses are auto-allocated within that space [13]. Another 
address allocation method, e.g. static, or based on internal 
mechanisms, may be used. HTTP is transported over Saratoga 
streaming, after an exchange of Saratoga beacons advertising 
the nodes and Saratoga metadata setting up the streaming 
connection [7]. Node 1 sends at least these HTTP headers: 

PUT content HTTP/1.1 

Content-Source: <1> 

Content-Destination: <4> 

Host: <2> 

Date: <original date of file> 

Content-MD5: <digest> 

Content-Length: <length> 

Content-Type: <MIMEtype> 

 

<content body> 

Node 2 receives the content successfully and then responds: 

HTTP/1.1 200 OK 

Date: <current time> 

B. Transfer from Node 2 to Node 3 

Node 2 is dual-stack, while Node 3 is IPv6 only. A wireless 
link is established, using auto-allocation of IPv6 addresses in 
fe80::/10 [13]. The epidemic DTN protocol learns of the new 
neighbour and signals the cache manager to begin an HTTP-
DTN session. The HTTP request is sent over SCTP [5], which 
Node 3 supports and tries first. Persistent connections, reusing 
the open transport stream for more transactions, are the default 
in HTTP/1.1. This allows onward forwarding of cached content 
from different sources in a single established transport stream. 

Here, Node 3, the local destination, requests any content to 
transfer from Node 2, which is carrying our content from Node 
1. Node 3 requests any content for forwarding from Node 2: 

GET * HTTP/1.1 

Host: <2> 

Date: <current time> 

Node 2 receives the request successfully and then responds: 

HTTP/1.1 200 OK 

Content-Source: <1> 

Content-Destination: <4> 

Date: <original date of file preserved> 

Content-MD5: <digest preserved> 

Content-Length: <length> 

Content-Type: <MIMEtype> 

 

<content body> 

 

HTTP/1.1 200 OK 

Date: <original date of second file> 

Content-Length: 

Content-Type: 

 

<second content body destined through 3> 

C. Transfer from Node 3 to Node 4 

A shared wireless link is joined, using auto-allocation of IPv6 
addresses in the fe80::/10 subnet [12]. After neighbour 
discovery, HTTP is sent over TCP [3]. Node 3 sends: 

PUT content HTTP/1.1 

Host: <4> 

Content-Source: <1> 

Content-Destination: <4> 

Date: <date of file preserved> 

Content-MD5: <digest preserved> 

Content-Length: <length> 

Content-Type: <MIMEtype> 



<content body> 

<any other headers and content to relay> 

Node 4 receives the content successfully and then responds: 

HTTP/1.1 200 OK 

Date: <current time> 

Node 4 keeps the original data with Content-Destination: 4, 
and hands it off to a local application selected using the 
MIMEtype in Content-Type:. Other data with different 
destinations is cached ready for further forwarding when 
routing suggests that a path to the destination is possible. 

Although each transfer in this example relies on IP 
underneath the transport stream, the IP address only has local 
significance for the link as a well-understood protocol waist. IP 
routing is not required. If IP routing was used in a larger 
multiple-link subnet between two HTTP-DTN nodes, it would 
be unlikely to interact with routing used on other subnets, or 
with the different routing overlay interconnecting DTN nodes. 

This example has copied a fixed file of known length. 
Using HTTP to transfer other resources of unknown length 
using the ‘chunked’ encoding is also possible. We are 
examining implementing the additional HTTP-DTN headers 
using the HTTP/1.1 functionality in Python. 

VI. COMPARING HTTP-DTN WITH THE BUNDLE PROTOCOL 

HTTP provides the ability to easily transfer content identified 
by MIME. This provides useful content identification and 
signalling of which application to use that we have previously 
identified as missing from the Bundle Protocol. HTTP-DTN 
shares some of the same problems that we have recognised for 
the Bundle Protocol [14]: 

- the assumption of synchronized timekeeping across all nodes 
that makes Date: timestamps and Expires: headers useful. 

- the need to ensure end-to-end reliability of headers. 

- Handling fragmentation imposed when a link drops, and 
delivery and reassembly of fragments taking separate paths 
in the network. Handling fragmentation is easiest when 
contact times and the amount of data that can be transferred 
to the next hop are known in advance (so-called proactive 
fragmentation). HTTP’s Content-MD5: digest [15] is useful 
for checking successful reassembly of fragments. 

- A way to indicate maximum accepted payload size that can 
be carried and stored is also needed. 

- Security has been a focus of Bundle Protocol research. HTTP 
supports a number of security protocols that can be evaluated 
for suitability for reuse in unusual DTN conditions. 
However, as they are, these protocols would span separate 
links or subnets between HTTP-DTN peers, rather than 
going end-to-end across a disconnected path. DTN networks 
in general pose problems for key management. 

- Routing, addressing and naming are not easy for DTNs. 

However, by leveraging existing well-implemented and well-
understood technologies, HTTP-DTN has benefits in being 
very easy to specify, understand, and implement. 

Usefully, HTTP’s headers are specified in text, and can be 
easily changed or added to with newly-defined headers. This is 
an advantage over any custom binary format, such as the 
Bundle Protocol, that is difficult to extend and modify in 
implementations. Human-readable communications tend to 
outlive even well-specified binary equivalents, e.g. the textual 
Rich Text Format and XML for word-processing documents. 

The Bundle Protocol’s textual Endpoint Identifiers (EIDs) 
could replace DNS names or IP addresses. This allows HTTP 
to leverage and interoperate with any addressing infrastructure 
built to support the Bundle Protocol, which can be replaced. 

CONCLUSIONS 

Work is in progress to separate HTTP from the underlying 
transport stream. This will make HTTP a ‘waist in the 
hourglass’ and layer in its own right. Applications should be 
able to work with HTTP regardless of the transport protocol 
underlying HTTP – and work to decouple HTTP from TCP and 
use HTTP with other transports is ongoing to enable this. 

Using HTTP/1.1 to move content around delay- and 
disruption tolerant networks is feasible, requiring only that 
HTTP work over transports tolerant of DTN networks, with the 
addition of a few extra headers to support forwarding of MIME 
content to destinations across separate HTTP transactions. The 
resulting ‘HTTP-DTN’ warrants further study. 
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