
Moving data in DTNs with HTTP and MIME
Making use of HTTP for delay- and disruption-tolerant networks with convergence layers

Lloyd Wood, Peter Holliday and Daniel Floreani

London, England;
Brisbane and Adelaide, Australia

lloyd.wood@yahoo.co.uk,
pho@tpg.com.au, daniel.floreani@internode.on.net

Ioannis Psaras

Centre for Communication Systems Research
University of Surrey
Guildford, England

i.psaras@surrey.ac.uk

Abstract—Multipurpose Internet Mail Extensions (MIME)

provide a simple way to describe the type of data sent and its use.

Email and the web use MIME extensively to carry different files.

The Hypertext Transfer protocol (HTTP) is universally

recognized as a straightforward method to carry MIME objects

as binary streams. Taking MIME and HTTP as a starting point,

and adopting the well-understood need for different ‘convergence

layers’ to carry HTTP in different challenged environments

where TCP may not be suitable, this paper outlines work in

progress to run HTTP over different transports, and how this

can be used to create a simple, yet powerful, approach to relaying

content in delay- and disruption-tolerant networks (DTNs).

Keywords-HTTP, MIME, Delay-Tolerant Networking, DTN.

I. INTRODUCTION

The most popular uses of communication on the Internet –
email, the web and the applications built using web
technologies – owe their success to their ability to easily
identify files and move copies around. This ability was given to
email with MIME attachments [1], and the web and HTTP [2]
reuse MIME with great success in parallel, with migration of
MIME content between the two in the web so that e.g. web
content can also be sent and handled by mail agents [Fig. 1].

As networking expands from fixed computers into the
‘edge cases’ of ad-hoc networks, or ‘delay- and disruption-
tolerant networks,’ whose requirements for routing and
transport are more demanding than those of the terrestrial
Internet, the ability to access, move and identify files still
matters; MIME can still fill a useful role in this domain, and
identifying content for use with applications still matters.

 In these challenged networks where permanent end-to-end
connectivity is never guaranteed, different transport protocols,
other than the Transmission Control Protocol (TCP) of the
traditional Internet [3], are needed for local network conditions.
When TCP fails due to long delays or disruptions in end-to-end
connectivity, much of the traditional Internet infrastructure that
relies on TCP will also fail to work.

However, HTTP is intended to be independent of TCP [2]
and can still be used as a ‘shim layer’ to the local transport,
providing a consistent interface for high-level applications to
move and identify files with MIME via a hop-by-hop object
exchange protocol.

We describe ongoing efforts to demonstrate the independence
of HTTP from TCP by using HTTP over other transport
protocols. These efforts move towards making HTTP a layer in
its own right in the network stack. Using transport protocols
suitable for DTN environments makes HTTP over those
transports more useful for challenged networks. We leverage
this by proposing simple additions to HTTP to create an
‘HTTP-DTN’ variant that can be used for delay- and
disruption-tolerant networking.

II. DECOUPLING HTTP FROM TCP

HTTP is specified as a generic, stateless application level
protocol independent of any transport protocol [2]. It can be
thought of a session layer, running over a transport layer
providing reliable delivery of the HTTP stream. Desire to
separate HTTP from its traditional transport of TCP is
increasing. For example, the Stream Control Transmission
Protocol (SCTP) [4] offers a feature-filled superset of TCP’s
capabilities, and can carry HTTP [5]. There are many
networking environments where TCP is not suitable, or is not
implemented in small embedded computers, used for e.g.
sensor networks, yet HTTP’s simple text headers can still be
used to identify, and to transfer, data [6]. For local network
conditions where TCP or an equivalent such as SCTP is not
suitable, an alternate transport layer with new behaviour, such
as Saratoga [7], or even an HDLC bitstream, can replace TCP.

HTTP requires a minimum of reliable streaming that can be
used to provide ordered delivery to the application; it is up to
the local transport layer in the local subnetwork to provide or
enhance that reliable streaming. For the examples given above,
TCP or SCTP are used to carry HTTP over the congestion-
sensitive public Internet, while Saratoga might be used across
dedicated private links where congestion is not a concern.

MIME

SMTP HTTP

Applications

TCP

Figure 1. MIME use in the web and email

 9781-4244-3941-6/09/$25.00 ©2009 IEEE

IP

TCP SCTP Saratoga

Frame Relay Ethernet 802.11

Other…

Other…

HTTP

Applications

MIME

Deering’s waist

the session waist

Figure 2. the protocol waists in the hourglass

Content-Source: Content-Destination:

first HTTP transfer A second HTTP transfer B third HTTP transfer C

4321

Figure 3. HTTP-DTN transfers end-to-end

5

Applications

HTTP server

content manager
storage/cache

DTN RP

Local transport

Local network

1

3

2

4signalling

file/object transfer

only required
on source and

destination nodes

Figure 4. Internal operation of a HTTP-DTN node

At the packet level, IP, the Internet Protocol, has been
described as 'the waist in the hourglass' [8] – what is above and
interfaces with IP can be changed in a modular network stack,
what is below and interfaces with IP can be changed, but
provided the new elements continue to interface to and work
with common paradigm of IP, the hourglass remains complete
and the stack remains functional. Here, IP is a network waist.

At the file/object level, HTTP and MIME together form
another session waist in the hourglass [Fig. 2]. HTTP is well-
understood by applications, just as IP is well-understood by
networks, encouraging its use. The applications can vary. The
protocol providing the transport stream can be changed to suit
local conditions, just as the link protocol is changed.

Being identified as a ‘protocol waist’ in this way indicates
that HTTP can be regarded as a separate layer in the network
stack in its own right. Given the prevalence of IP in many
networks, it is likely that two popular waists (the popular layers
that other layers interface to) exist: these are IP and HTTP.

These can be used separately, but will most commonly be used
together. The transport protocol and link protocol for the
physical environment that IP and HTTP are used over vary
more, as they depend on local conditions and requirements.

MIME and HTTP are grouped together here because
MIME use for HTTP is described as part of the HTTP/1.1
specification [2], rather than being entirely consistent across
both email, which MIME was first developed for, and the web.

III. ADAPTING HTTP FOR DTN

A simple approach leverages existing standards, using the
HTTP as a transport-layer-independent ‘session layer’ between
each two communicating delay-tolerant networking (DTN)
nodes [9]. Rather than an end-to-end communication across a
path as in the traditional Internet, this use of HTTP is hop-by-
hop between communicating peers [Fig. 3].

HTTP runs over its ‘convergence layer’ – that is, a transport
layer – suitable for local network conditions between each
HTTP-capable node. New Content-Source: and Content-
Destination: headers are added to HTTP. These provide late-
binding endpoint identifiers, as the local Host: information is
now only between peer HTTP nodes on the local subnet.

It is worth noting that Content-*: headers are treated
specially by HTTP. HTTP servers must reject transfers with
unknown Content- headers. Adding these two new headers
effectively creates a separate DTN network that will not
interact with or affect existing traditional web use of HTTP, as
these ‘HTTP-DTN’ queries will be rejected by traditional
HTTP servers unfamiliar with these headers.

Internal operation of the DTN node is shown [Fig 4]. We
assume that an epidemic DTN routing protocol (RP) is used to
manage connectivity [10]. Local applications interact with the
HTTP server and its cache to store and retrieve MIME objects
either by controlling simple HTTP PUT/GET or some other
content management, e.g. WebDAV, SOAP, or AXL (1).
Neighbour discovery and authentication tells the DTN RP of a
new neighbour (2). The RP tells the content manager (3). An
HTTP-DTN session with the neighbour exchanges data in
caches. MIME objects can be pulled (GET or HEAD) or
pushed (PUT or POST) from one node to another (4). Any
received MIME objects with Content-Destination: matching
the local node are handed to local applications, if any (5), while
other objects are cached for the next hop. A series of separate
HTTP transfers between peer nodes completes the end-to-end
delivery of objects for distant nodes. The nodes act as caches of
MIME content in transit between relaying HTTP transfers.
This store-and-forward caching model differs from the
intercept-driven proxy caching used in the World-Wide Web.

HTTP does not contain timers itself, so using HTTP with
long-delay networks is possible. HTTP can work over
extremely long distances provided that the transport protocol
underneath it tolerates those distances; neither TCP nor SCTP
are likely to be suitable. Supporting long distances requires
features from HTTP/1.1: persistence to reuse open transport
connections, pipelining to send multiple items without first
receiving a response, and unidirectional PUTs to be able to
send data blindly without acknowledgement if required.

IV. NAMING AND ADDRESSING

Delay and disruption-tolerant ad-hoc networks with
mobility and without end-to-end connectivity pose challenges
for routing, naming and addressing. Resolving named
destinations can no longer be done once early with a lookup, as
in the Domain Name System (DNS), but needs to be done by
every caching node to determine where the destination might
be and the current likeliest path towards it.

As a result, there is a need for applications to understand
new addressing and namespace paradigms that can be used
with HTTP. Fortunately, as HTTP’s headers are in text,
replacing textual IP or DNS addresses with other late-binding
addresses, for other namespaces and routing, is straightforward.

Allowing an application to explicitly specify the desired
transport and interface to use in the URI for a program to
interpret when executing HTTP GETs or PUTs is also useful –
particularly when a choice of mechanisms and interfaces are
available and a selection must be made, and infrastructure such
as DNS is not present so cannot be queried for advice [10].

V. A WORKED EXAMPLE OF HTTP-DTN USE

This summarises an HTTP-DTN file delivery, based on the ad-
hoc temporary connections between nodes shown previously
[Fig. 3]. This simplistic example is hypothetical, but is
illustrates use of different technologies in a modular fashion.

Here there are three separate, disjoint HTTP/1.1 transfers,
with their own reliable transport streams with control loops and
acknowledgements, to describe in sequence. These examples
are deliberately given illustrating the different ways that
HTTP-DTN can transfer data.

An application at Node 1 places content into its local
storage, for delivery to Node 4. Delivery is via Nodes 2 and 3,
where the content is stored along with metadata on original
source, final destination, timestamp, etc. before being relayed
onwards.

The numbers given to the nodes are placeholders for
locally-understood textual representations of addresses. Those
addresses would be understood by the local DTN routing
protocol running at each node, with separate exchanges of
routing information and forwarding decisions that are not
described here. These HTTP transfers are now described.

A. Transfer from Node 1 to Node 2

A wireless point-to-point link is established, using IPv4
addresses in the reserved 169.254.0.0/16 subnet [12].
Addresses are auto-allocated within that space [13]. Another
address allocation method, e.g. static, or based on internal
mechanisms, may be used. HTTP is transported over Saratoga
streaming, after an exchange of Saratoga beacons advertising
the nodes and Saratoga metadata setting up the streaming
connection [7]. Node 1 sends at least these HTTP headers:

PUT content HTTP/1.1

Content-Source: <1>

Content-Destination: <4>

Host: <2>

Date: <original date of file>

Content-MD5: <digest>

Content-Length: <length>

Content-Type: <MIMEtype>

<content body>

Node 2 receives the content successfully and then responds:

HTTP/1.1 200 OK

Date: <current time>

B. Transfer from Node 2 to Node 3

Node 2 is dual-stack, while Node 3 is IPv6 only. A wireless
link is established, using auto-allocation of IPv6 addresses in
fe80::/10 [13]. The epidemic DTN protocol learns of the new
neighbour and signals the cache manager to begin an HTTP-
DTN session. The HTTP request is sent over SCTP [5], which
Node 3 supports and tries first. Persistent connections, reusing
the open transport stream for more transactions, are the default
in HTTP/1.1. This allows onward forwarding of cached content
from different sources in a single established transport stream.

Here, Node 3, the local destination, requests any content to
transfer from Node 2, which is carrying our content from Node
1. Node 3 requests any content for forwarding from Node 2:

GET * HTTP/1.1

Host: <2>

Date: <current time>

Node 2 receives the request successfully and then responds:

HTTP/1.1 200 OK

Content-Source: <1>

Content-Destination: <4>

Date: <original date of file preserved>

Content-MD5: <digest preserved>

Content-Length: <length>

Content-Type: <MIMEtype>

<content body>

HTTP/1.1 200 OK

Date: <original date of second file>

Content-Length:

Content-Type:

<second content body destined through 3>

C. Transfer from Node 3 to Node 4

A shared wireless link is joined, using auto-allocation of IPv6
addresses in the fe80::/10 subnet [12]. After neighbour
discovery, HTTP is sent over TCP [3]. Node 3 sends:

PUT content HTTP/1.1

Host: <4>

Content-Source: <1>

Content-Destination: <4>

Date: <date of file preserved>

Content-MD5: <digest preserved>

Content-Length: <length>

Content-Type: <MIMEtype>

<content body>

<any other headers and content to relay>

Node 4 receives the content successfully and then responds:

HTTP/1.1 200 OK

Date: <current time>

Node 4 keeps the original data with Content-Destination: 4,
and hands it off to a local application selected using the
MIMEtype in Content-Type:. Other data with different
destinations is cached ready for further forwarding when
routing suggests that a path to the destination is possible.

Although each transfer in this example relies on IP
underneath the transport stream, the IP address only has local
significance for the link as a well-understood protocol waist. IP
routing is not required. If IP routing was used in a larger
multiple-link subnet between two HTTP-DTN nodes, it would
be unlikely to interact with routing used on other subnets, or
with the different routing overlay interconnecting DTN nodes.

This example has copied a fixed file of known length.
Using HTTP to transfer other resources of unknown length
using the ‘chunked’ encoding is also possible. We are
examining implementing the additional HTTP-DTN headers
using the HTTP/1.1 functionality in Python.

VI. COMPARING HTTP-DTN WITH THE BUNDLE PROTOCOL

HTTP provides the ability to easily transfer content identified
by MIME. This provides useful content identification and
signalling of which application to use that we have previously
identified as missing from the Bundle Protocol. HTTP-DTN
shares some of the same problems that we have recognised for
the Bundle Protocol [14]:

- the assumption of synchronized timekeeping across all nodes
that makes Date: timestamps and Expires: headers useful.

- the need to ensure end-to-end reliability of headers.

- Handling fragmentation imposed when a link drops, and
delivery and reassembly of fragments taking separate paths
in the network. Handling fragmentation is easiest when
contact times and the amount of data that can be transferred
to the next hop are known in advance (so-called proactive
fragmentation). HTTP’s Content-MD5: digest [15] is useful
for checking successful reassembly of fragments.

- A way to indicate maximum accepted payload size that can
be carried and stored is also needed.

- Security has been a focus of Bundle Protocol research. HTTP
supports a number of security protocols that can be evaluated
for suitability for reuse in unusual DTN conditions.
However, as they are, these protocols would span separate
links or subnets between HTTP-DTN peers, rather than
going end-to-end across a disconnected path. DTN networks
in general pose problems for key management.

- Routing, addressing and naming are not easy for DTNs.

However, by leveraging existing well-implemented and well-
understood technologies, HTTP-DTN has benefits in being
very easy to specify, understand, and implement.

Usefully, HTTP’s headers are specified in text, and can be
easily changed or added to with newly-defined headers. This is
an advantage over any custom binary format, such as the
Bundle Protocol, that is difficult to extend and modify in
implementations. Human-readable communications tend to
outlive even well-specified binary equivalents, e.g. the textual
Rich Text Format and XML for word-processing documents.

The Bundle Protocol’s textual Endpoint Identifiers (EIDs)
could replace DNS names or IP addresses. This allows HTTP
to leverage and interoperate with any addressing infrastructure
built to support the Bundle Protocol, which can be replaced.

CONCLUSIONS

Work is in progress to separate HTTP from the underlying
transport stream. This will make HTTP a ‘waist in the
hourglass’ and layer in its own right. Applications should be
able to work with HTTP regardless of the transport protocol
underlying HTTP – and work to decouple HTTP from TCP and
use HTTP with other transports is ongoing to enable this.

Using HTTP/1.1 to move content around delay- and
disruption tolerant networks is feasible, requiring only that
HTTP work over transports tolerant of DTN networks, with the
addition of a few extra headers to support forwarding of MIME
content to destinations across separate HTTP transactions. The
resulting ‘HTTP-DTN’ warrants further study.

REFERENCES

[1] N. Freed and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part One,” RFC 2045, November 1996.

[2] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” RFC
2616, June 1999.

[3] J. Postel (ed.), “Transmission Control Protocol,” RFC 793, Sept. 1981.

[4] R. Stewart (ed.), “Stream Control Transmission Protocol,” RFC 4960,
September 2007.

[5] P. Natarajan, P. Amer, J. Leighton and F. Baker, “Using SCTP as a
Transport Layer Protocol for HTTP,” work in progress as an internet-
draft, draft-natarajan-http-over-sctp, March 2009.

[6] E. F. Sadok and R. Liscano, “A Web Services Framework for 1451
Sensor Networks”, IEEE Instrumentation and Measurement Technology
Conference (IMTC) 2005, pp. 554–559, Ottawa, 16-19 May 2005.

[7] L. Wood et al., “Saratoga: A Scalable File Transfer Protocol,” work in
progress as an internet-draft, draft-wood-tsvwg-saratoga, May 2009.

[8] S. Deering, “Watching the Waist of the Protocol Hourglass,” keynote,
IEEE International Conference on Network Protocols (ICNP), Austin,
Texas, October 1998.

[9] L. Wood and P. Holliday, “Using HTTP for delivery in Delay/
Disruption-Tolerant Networks,” work in progress as an internet-draft,
draft-wood-dtnrg-http-delivery, May 2009.

[10] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges,” IEEE
Communications Surveys & Tutorials, Vol. 8, Issue 1, pp. 24-37, 2006.

[11] L. Wood, “Specifying transport mechanisms in Uniform Resource
Identifiers,” work in progress as an internet-draft, draft-wood-tae-
specifying-uri-transports, May 2009.

[12] IANA, “Special-Use IPv4 Addresses,” RFC3330, September 2002.

[13] S. Cheshire, B. Aboba and E. Guttman, “Dynamic Configuration of IPv4
Link-Local Addresses,” RFC 3927, May 2005.

[14] L. Wood, W. M. Eddy and P. Holliday, “A Bundle of Problems,” IEEE
Aerospace conference, Montana, March 2009.

[15] J. Myers and M. Rose, “The Content-MD5 Header Field,” RFC 1864,
October 1995.

