
TCP’s protocol radius

Cathryn Peoples
University of Ulster

Co-authors: Dr. Lloyd Wood, Prof. Gerard Parr, Prof. Bryan Scotney, Dr. Adrian Moore

IWSSC ’07
Salzburg, Austria
September 2007



Consider the following transmission scenario

A ground station on Earth wishes to communicate with 
a satellite orbiting Mars.

What transport protocol can be used to perform the 
communication?



TCP doesn’t work over very long distances

…once a spacecraft is more than one minute away
(in terms of light-trip time), then every attempt to 
establish a TCP connection will fail.
Farrell, Cahill, et al.,
When TCP Breaks, Internet Computing, August 2006

For a two-minute timer, you need to get to the receiver and 
back again to the sender, so halve the distance…

but is that when TCP really breaks?

Current TCP protocols have very poor performance in 
the Interplanetary Internet.
Akan, Fang, Akyildiz, 
TP-Planet: A Reliable Transport Protocol for Interplanetary 
Internet, IEEE Journal on Selected Areas in Communications, 
February 2004



Timers affect protocol performance
The distance any protocol can communicate is limited by 
physical signal strength and logical timers – how long the sender 
waits before giving up.
Translation between timers’ time and distance is straightforward
– use speed of light in vacuum (light-seconds).
It can be hard to see the effects of timers, due to interactions of 
multiple timers at multiple layers (link and transport).



Experiments attempt to quantify protocol 
performance in terms of operational ranges

Entire protocol fails hard. Beyond this 
distance, communication cannot take 
place using this protocol.
A number of possible step changes 
in performance due to timers in the 
protocol state machine becoming 
limiting factors. 

protocol radius R
2R >= usable RTT

performance 
radius r

Volume within performance 
radius r where protocol will 
work entirely as designed

Figure shows great-circle 
cross-section of protocol 
radius sphere or ‘bubble’. ex

pr
es

se
d 

in
 d

is
ta

nc
e 

or
 in

 ti
m

e 
t

lig
ht

-s
ec

on
ds

 s
er

ve
s 

bo
th

 p
ur

po
se

s



Experiment design
In our experiments: 

Deliberately set up a really simple simulation scenario, using 
TCP over a simple serial link.
No MAC or link timers. Only TCP timers to look at.
No errors/losses, so we can examine timer behaviour without 
introducing noise/inducing backoff reactions.



Simulation scenario

TCP sender TCP receiver

single perfect simple link, varying distance



TCP Simulation Scenario in Opnet

client server

PPP Link
Opnet 
11.5



Simulation scenario

Simulated using both ns and Opnet.

Altered distance between nodes (up to distance of 30 
seconds), reran simulation for different TCP variants (Reno, 
SACK, and timestamps). Thousands of simulations.

Looked at time to transfer a file (variable packet sizes up to 
500,000 bytes) to determine where TCP breaks.

TCP sender TCP receiver

single perfect simple link, varying distance



What we found – limits to communication
TCP’s SYN/ACK setup is 
determining factor for 
distance. If the SYN timer 
gives up before an ACK
response comes in, 
transfer never starts.
SYN timer is 
implemented as 3 
seconds with doubling 
exponential backoff –
sends a SYN, waits 3s, 
sends another SYN, 
waits 6 seconds…
Any SYN/ACK coming 
back will do; first seen as 
response to a later SYN.

3 s RTO

1st resend

2nd resend
syn/ack repeat

0

3

9

21

SYN sent

SYN/ACK reply

SYN/ACK reply with data

handshake
complete

time
(seconds)

first ack

6s backoff

12s backoff

syn/ack repeat



Eventually, TCP quits sending SYNs
Opnet TCP fails to transmit after 5 SYNs – 3+6+12+24 
= 45s

Got to get a response back, so 45/2 = 22.5 light 
seconds, or 6.7 million kilometers. If SYN/ACK is sent 
before 22.5s and received before 45s, session starts.

ns never gives up. 

Implementations give up earlier – Microsoft sends just 
two SYNs for a 9s total timeout and a 4.5 light-second 
distance1. That is still 1.3 million km – TCP will work 
(very poorly) out to Moon and lunar Lagrange points.

SYN/ACK sets limit on range – TCP’s protocol radius.

1 Microsoft Windows 2003 TCP/IP Implementation, TechNet, Microsoft Corporation, June 2006.



File transfers take longer with longer distance. But it’s not 
linear, due to TCP window behavior.
Governed by TCP’s retransmission timeout (RTO) value, 
which defaults to 3 seconds. The Internet is normally less 
than 1.5 seconds across end-to-end, so that’s okay.
TCP over geostationary satellite is in the ‘okay’ region.

Found a step change in TCP’s performance

1.5s
449,688 kmlog/log 

graph

time to transfer 
complete file

vs
path delay or 

distance

22.5s
6,745,320 km

half RTO

geo sat
0.25s

okay poor fails

5th SYN 
fails to be 
received 

within 
timeout 
periodSYN received 

within first RTO of 
3 seconds



Found a step-change in TCP’s goodput

lin/log 
graph

ratio between 
goodput and 
throughput

vs
path delay or 

distance

Goodput/throughput ratio gives scalable view of performance.
Goodput degrades beyond 1.5 seconds.
Variations in delay due to crude timer granularity in Opnet
Results are independent of file size, buffer size or ssthresh
slow-start threshold.

half RTO 1.5s

okay poor fails



TCP performance alters with distance

highest performance –
within inner performance radius

(for TCP this is 3s RTO – 1.5s distance)

okay

inner performance radius limiting performance radius



TCP performance alters with distance

step change to range of lower performance –
still within bounding protocol radius

poor

inner performance radius limiting performance radius



TCP performance alters with distance

TCP fails –
path distance is now beyond bounding protocol radius

(SYN/ACK exchange times out)

fails

inner performance radius limiting performance radius



How does this apply to other protocols?
Looked through IETF protocols for timer dependencies 
and default values that limit distance. Routing protocols, 
BGP, even Mobile IP – everything has timers. Everything 
is distance-limited at a logical level.
Would like to simulate 802.11 performance to find limits.
But, even with TCP, we found differences between 
simulators that affected results.
Wireless simulators not matching standards or each other 
is now well-known; new detailed papers comparing 802.11 
simulators, and pointing out problems.
It will be a while before clear conclusions about timer 
limitations can be drawn for complex link protocols.
Optimising protocols to perform as well as possible across 
their operating ranges is a promising area – e.g. TCP has 
a max RTO of 64s. Is that reasonable, or just too large?



How can this information be used?
An understanding of a protocol’s radius can help to 
influence decisions made by context-aware 
applications

Friday 14th September

14:00 

TRACK III

A Reconfigurable Context-Aware Protocol Stack for 
Interplanetary Communication

Presenter: Cathryn Peoples



Questions?
Thankyou.


	TCP’s protocol radius
	Consider the following transmission scenario
	TCP doesn’t work over very long distances
	Timers affect protocol performance
	Experiments attempt to quantify protocol performance in terms of operational ranges
	Experiment design
	Simulation scenario
	TCP Simulation Scenario in Opnet
	Simulation scenario
	What we found – limits to communication
	Eventually, TCP quits sending SYNs
	Found a step change in TCP’s performance
	Found a step-change in TCP’s goodput
	TCP performance alters with distance
	TCP performance alters with distance
	TCP performance alters with distance
	How does this apply to other protocols?
	How can this information be used?
	Questions?

