

 1

A Bundle of Problems
Lloyd Wood

Global Government Solutions Group
Cisco Systems

London, United Kingdom.
lwood@cisco.com

Wesley M. Eddy
Federal Network Systems

Verizon Business
Cleveland, Ohio, USA.

wesley.eddy@verizonbusiness.com

Peter Holliday
Global Government Solutions Group

Cisco Systems
Brisbane, Australia.
phollida@cisco.com

Abstract—Delay-Tolerant Networking” (DTN) is a

neologism used for a new store-and-forward architecture

and protocol suite intended for disrupted networks where

there is intermittent or ad-hoc connectivity. This has been

proposed as one approach to supporting delay-tolerant

networks. Work in the late 1990s on the “Interplanetary

Internet” forms the basis for current DTN protocols and

architecture. That early work considered transport protocols

robust to the hours-long propagation delays of deep-space

communications. DTN is also known, primarily in military

circles, as Disruption-Tolerant Networking, due to the

dynamic links and outages in the military tactical

environment, rather than long-delay links. In both cases,

DTN technologies are well-suited to applications that are

mostly asynchronous and insensitive to large variations in

delivery conditions. DTN networks differ sufficiently from

traditional terrestrial networks in their characteristics and

connectivity that link, network and transport protocols must

be carefully considered and chosen to cope with these

different characteristics, or new protocols can be designed

that are suited for the problems that these DTN network

conditions impose. The “Bundle Protocol” exists within the

DTN architecture, which sends bundles over subnet-specific

transport protocols, called “convergence layers.”

“Bundling” has undergone a large amount of shared

development and design over a period of years as a research

effort. We examine the Bundle Protocol and its related

architecture closely, and discuss areas where we have found

that the current Bundle approach is not well-suited to many

of the operational concepts that it was intended to support.

Problems with the Bundle Protocol and its convergence

layers exist in mechanisms for error detection and overall

reliability. This weakens the Bundle Protocol’s suitability to

disrupted and error-prone networks. We show that these

reliability issues can lead to performance problems in DTN

networks, requiring mitigation. Open research and

development areas also exist with design choices in

handling timing information, in determining necessary and

sufficient security mechanisms, in its Quality of Service

capabilities, and in other aspects of application or content

identification. We show that the existing DTN bundling

architecture has a number of open real-world deployment

issues that can be addressed. We suggest possible

remediation strategies for these weak areas of the bundle

protocol that we have been working on. We also look at

alternate approaches to DTN networking. Rather than only

providing criticism, this paper identifies open issues, where

work on modifying the Bundle Protocol is encouraged and

approaches to address its various problems are suggested.

TABLE OF CONTENTS
12

1. INTRODUCTION .. 1
2. OUR USE OF THE BUNDLE PROTOCOL 3
3. BASIC BUNDLE PROTOCOL ARCHITECTURE 3
4. PROBLEMS AND ISSUES WITH BUNDLING 4
5. OTHER APPROACHES TO DTN NETWORKING 13
CONCLUSIONS .. 14
ACKNOWLEDGEMENTS .. 14
REFERENCES .. 14
BIOGRAPHIES ... 15

1. INTRODUCTION

The term “Delay-Tolerant Networking” stems from Fall’s

seminal 2003 SIGCOMM paper, which introduced an

architecture generalised from design work for the

Interplanetary Internet [1]. The Delay Tolerant Networking

Research Group (DTNRG) in the Internet Research Task

Force (IRTF) began working on development of this

architecture [2] and its Bundle Protocol [3]. The DTNRG

community has enjoyed wide participation from experts in a

variety of disciplines, with knowledge of a variety of

diverse operating environments.

The Bundle Protocol design is intended to meet the needs of

widely divergent classes of networks including deep-space

exploration, undersea networking, tactical military

networks, ad-hoc networks, sensor networks, and other so-

called ‘challenged networks’ [4]. A bundle consists of a

number of concatenated blocks, including common shared

metadata (the ‘bundle header’ or ‘primary bundle block’)

followed by a number of other payload blocks for varying

purposes, as shown in figure 1.

By design, the bundle specification that has been developed

is mostly focused on the logical layout of the bundle format,

rather than specifying the operations and interactions

between the protocol entities, called “bundle agents”. It is in

many ways more similar to a complex file format

specification than to an internetworking protocol in this

regard. This was purposefully done so that the details for a

specific implementation or deployment scenario could be

worked out later. For example, the operations for forming

bundle protocol addresses in Endpoint Identifiers (EIDs)

and forwarding bundles based on them are not yet defined.

1
1 978-1-4244-2622-5/09/$25.00 ©2009 IEEE.
2 IEEEAC paper #1023, Version 10 final, updated December 23, 2008

 2

Dictionary information listing

Endpoint Identifiers (EIDs)

payload

Primary Bundle Block

First Payload Block

Block length

Offsets into Dictionary identifying

source, destination, custodians etc.

Timestamps and lifetime

version

Any fragmentation and length info

type flags length

Any references to Dictionary EIDs

payload

nth Payload Block

type flags length

Any references to Dictionary EIDs

flags

Dictionary information listing

Endpoint Identifiers (EIDs)

payload

Primary Bundle Block

First Payload Block

Block length

Offsets into Dictionary identifying

source, destination, custodians etc.

Timestamps and lifetime

version

Any fragmentation and length info

type flags length

Any references to Dictionary EIDs

payload

nth Payload Block

type flags length

Any references to Dictionary EIDs

flags

Many fields (including EIDs and fields using SDNVs)

are variable-length.

Figure 1 – Basic bundle and block structure

Nor are Quality of Service mechanisms, means for key

exchange and establishment of security associations, or

network management and monitoring protocols.

This Bundle Protocol is intended to provide a general

solution to networking for ad-hoc, delay-tolerant and

disrupted networks. These networks can be said to have one

characteristic in common: they are unlike terrestrial fixed

networks in their link conditions and connectivity. They can

vary in many other ways. This makes it very difficult to

create a generalized networking solution that is suitable for

a wide range of delay-tolerant networks. The Bundle

Protocol alone does not solve the problems of networking in

any of these environments. Rather, it is intended to provide

a common format for store-and-forward networking

messages and proposes that the availability of in-network

storage in bundle agents will allow the challenges of these

networks to be overcome. Many of the innovations that

enable and support delay-tolerant network services should

be understood as existing outside the basic Bundle Protocol

itself, and as being largely independent of the Bundle

Protocol. The Bundle Protocol requires significant

supporting infrastructure to function, in convergence layer

adapters, and in enhancements or additions for specific

implementations or deployments.

The Bundle Protocol always sits upon a local transport

‘convergence layer’ whose design matches local network

conditions. Bundle Protocol identifiers for routing, the

Endpoint Identifiers (EIDs), are somehow mapped to local

routing addresses in the local subnetwork via late binding.

The Bundle Protocol itself only supports internetworking

indirectly, by permitting multiple different convergence

layers to be used, or multiple diverse naming schemes for

EIDs to be used. Controlling the mappings, propagation of

routing information, and discovery of node and application

identifiers, is left as orthogonal to the Bundle Protocol, and

may be accomplished by entirely incompatible methods in

different networks. This implies that there will not be a

single universal DTN like the shared and widely-understood

Internet, but rather many independent and incompatible

DTNs. This implication should be carefully considered

against the goals of network-centric communications

infrastructure. An internetwork DTN architecture based on

the Bundle Protocol may be undesirably similar to the

beads-on-a-string model [5] with translation gateways

between neighbouring networks, should the local

enhancements to the Bundle Protocol become too divergent

to permit high-level interoperability between user

applications.

This indirection in implementing specific features separate

from the Bundle Protocol itself does not prevent the Bundle

Protocol’s performance from being affected by local

networking conditions. Our experiments with the Bundle

Protocol in operational environments with deployed DTN

networks have clearly demonstrated that the Bundle

 3

Protocol is affected by real-world concerns and physical

effects, such as error-detection, reliability and timing. These

physical effects act on the logical Bundle Protocol format

even through the local network and the local convergence

layer.

2. OUR USE OF THE BUNDLE PROTOCOL

Authors of this paper participated in the team that is the first

to use the Bundle Protocol from space. The Bundle Protocol

was tested by transferring image data from the UK-DMC

remote-sensing satellite [6][7]. We implemented bundling

over the Saratoga UDP-based transfer protocol developed

at Surrey Satellite Technology Ltd (SSTL). Saratoga is

designed for scheduled private links where high utilization

is required by a single flow, and where loss recovery

presumes that congestion is not present.

These private links are the wireless links from a remote-

sensing satellite in low Earth orbit to a ground station,

downloading image data during a pass [8]. Saratoga was

designed to work as a standalone protocol, and was later

also adopted to carry bundles as a convergence layer for

Bundle Protocol use [9]. Proactive fragmentation of files

delivered in bundle fragments across multiple passes over a

ground station was demonstrated. This fragmentation is not

found to be currently of benefit to SSTL's operational

imaging scenario, because planned satellite contacts are

rarely interrupted, image files are sized to be transferable in

a single pass, and images are not stored on the satellite for

long periods if not downloaded, but can be replaced in situ

by newer images. However, the support for fragmentation

may have utility in future systems where more than one

ground station is used to upload or download large volumes

of data, where data, e.g. large code executables, are

uploaded to the satellite across multiple passes, or where

more automated distribution and processing of data is

desired.

We also used the Bundle Protocol over TCP as a

convergence layer, for carrying downloaded remote sensing

data across the shared terrestrial Internet. This was

implemented with existing DTN2 dtnd bundle agent

software [10][11]. The DTN bundles for these experiments

were carried by and fully utilized existing IP networking

throughout.

In working with the Bundle Protocol and multiple

convergence layers in both concept and practice, we have

become familiar with its development and design choices –

and with its current architectural weaknesses and areas

needing work. As it may be possible to remedy many of

those weaknesses, we discuss them at length in this paper.

As popular media coverage has somewhat sensationalized

the benefits and features of the Bundle Protocol beyond

those present in its current incarnation, these weaknesses

deserve to be more widely known, so that any potential user

of the Bundle Protocol is aware of what benefits the Bundle

Protocol does currently bring to a user’s application – and

what it doesn’t yet bring.

3. BASIC BUNDLE PROTOCOL ARCHITECTURE

From an architectural standpoint, bundling differs from

traditional Internet paradigms, even at the highest level of

addressing and the definition of endpoints. In the Internet’s

layered model, applications and transport protocols run end-

to-end, with the Internet Protocol (IP) mediating link

vagaries at each hop between source and destination.

Internet applications send data in different ways (e.g.

bytestreams versus datagrams) and that data is broken into

relatively small IP packets with well-defined minimal and

maximal sizes by the transport and packetization sub-layers.

In the DTN bundling architecture, end applications

“register” with bundle agents. The applications then pass

data to the bundle agents, which then create bundles and

perform the end-to-end transmission functions behalf of the

applications. However, in contrast to the packetization of IP

data by transport layers using IP, the “bundleization” rules

for DTN data are not yet well-understood.

Internet applications typically select transport protocol

configurations that fit their needs for reliability, and based

on that configuration which they control, can clearly

understand what levels of retransmission and error-detection

are in-effect for their transmissions. Reliability of bundle

transmissions is intended to be provided through the

optional “custody transfer” mechanism in the bundle

protocol. The custody transfer is essentially a bundle agent

acknowledgement that a particular bundle has been received

by some later bundle agent – the custodian – which has

taken on the responsibility for getting the bundle to its final

destination. This is what allows the bundle protocol to

provide some in-network retransmission service to avoid the

expense or even impossibility of end-to-end retransmission.

However, as currently defined, the applications still have to

provide many reliability mechanisms of their own to detect

or prevent corruption of data, misdelivery of data,

replication of data, etc.

While the definition of Bundle Protocol reliability was

apparently discussed at an early phase [4], we could not find

published records of those discussions. How reliability and

error detection is handled is not explained in the

architecture or bundle protocol definition RFCs, and the

details and implications of this have not been known or

well-understood until recently. We discuss reliability at

greater length later in this paper.

IP networks have well-understood means for locating

services and resolving host and service identifiers into

locators, as well as updating the bindings in the mapping

 4

systems – the Domain Name System (DNS), Session

Initiation Protocol (SIP) servers, and others. The Bundle

Protocol currently relies on late-binding of all identifiers

and does not yet distinguish between host and service

identifiers. This use of late binding is what enables a DTN

to function in the absence of well-connected infrastructure

that possesses the low latency of communications required

to perform global lookups and multiple recursive exchanges

in sequence – a necessity for DNS. However, the

localization of the mappings raises the issue of how to

securely update them. There are not yet means for bundle

agents to police registrations, and secure registration and

efficient registration state management may itself require

additional protocol machines that are not yet defined. There

are interesting cases possible, such as a bundle agent

accepting custody of a bundle for an application who it

thought was registered, even though that application

endpoint has moved on to another bundle agent. Handling

errors due to stale local state and gracefully recovering

becomes necessary due to the inability to coordinate global

state. More work is required to prevent or at least mitigate

this.

IP network engineers are familiar with the creed “IP over

anything”, referring to the ability of IP to work over and

bridge across many types of underlying subnetworks. For

example, specifications exist for IP over many types of

wired and wireless links, and demonstrations have even

been done of IP over challenging transmission media with

large delays, such as carrier pigeons, as a lark.

The Bundle Protocol is similarly intended to work over any

type of subnetwork, and accomplishes this through

“convergence layer adapters” tailored for each subnetwork.

Convergence layer adapters play a significant role in the

reliability of the bundle protocol, as discussed later.

Specifications of IP over different link types and DTN

convergence layers differ in their scope, as IP specifications

define how to configure addresses, discover routers,

maintain neighbor reachability information, and other basic

operations that are not included in the definition of scope of

a DTN convergence layer adapter.

4. PROBLEMS AND ISSUES WITH BUNDLING

4.1 Reliability, error detection, checksums and performance

The current base Bundle Protocol specification does not

attempt to detect errored bundles, in that it has no checksum

support for error detection and rejection of corrupted

bundles – either to detect corrupted header information

(metadata) that the Bundle Protocol uses for its own needs,

or to detect corruption in payloads that it carries. It cannot

be determined if the bundle information received by a

bundle destination is error-free or not.

rapid closed-loop feedback

between source and destination

open loop due to less or no direct connectivity

between source and destination; no end-to-end loop;

no permanent path

more reliance on separate closed loops

between each pair of nodes with local checking

for e.g. custody transfer and to increase throughput

little need for resends between or checking

at nodes when resends can easily and quickly

be done end-to-end over the whole path instead

Terrestrial fixed Internet

Delay-tolerant network

rapid closed-loop feedback

between source and destination

open loop due to less or no direct connectivity

between source and destination; no end-to-end loop;

no permanent path

more reliance on separate closed loops

between each pair of nodes with local checking

for e.g. custody transfer and to increase throughput

little need for resends between or checking

at nodes when resends can easily and quickly

be done end-to-end over the whole path instead

Terrestrial fixed Internet

Delay-tolerant network

Figure 2 – comparison of control loops

Error detection is a very basic networking concept that was

apparently purposefully left out of the Bundle Protocol

design, for both its header (metadata) and payload data.

Without useful error detection, the Bundle Protocol’s

custody transfer mechanism cannot guarantee that a

custodian bundle agent taking responsibility for final

delivery of a bundle has actually received an uncorrupted

copy of that bundle to send on. We demonstrate that this is a

severe performance and resource usage issue in DTNs for

applications relying on reliably-transmitted and uncorrupted

payload data. This also becomes an issue when bundle

headers, or metadata, are unexpectedly corrupted in transit,

leading to misdelivery, misinterpretation of data fields, or

other mishandling.

The rationale for the omission of error detection has been

described as based on the fact that not all applications

require error-detection or data integrity, and that

applications can provide these features themselves. That

rationale ignores the need for any protocol to guard and

verify the reliability of and test its own header information,

which the sending application using the protocol does not

know about – in this case, the Bundle Protocol's own

metadata. The Bundle Protocol’s own headers and metadata

should be verified by using checksums covering each

block’s header in order to achieve this verification and

protection against corruption.

Leaving error recovery up to the applications is only

possible when the applications are tightly coupled across the

network, with a tight control loop for resends of errored

data. DTN networks, by their ad-hoc nature, are loosely

coupled, and there may not be any direct communication or

control loop between applications at end nodes, requiring

increased assistance from the network to improve

performance. This is shown conceptually in figure 2.

The well-known end-to-end principle [13] has been used to

justify both leaving everything to the applications, and the

 5

alternative of involving the network in recovery and

resends, as the principle both implies that each application

must always provide its own sanity-checking fit for purpose

as the ultimate fallback, and at the same time that if

significant performance gains are obtainable, then the lower

layers should also implement a version of these features to

improve overall performance across the network. To quote

[13]: "Clearly, some effort at the lower levels to improve

network reliability can have a significant effect on

application performance."

Optional security extensions to the Bundle Protocol [14]

have been proposed as a way to enable error detection. It is

true that some error detection can be accomplished through

security protocols that provide keyed checksums across

their payloads, as possible in the Bundle Security Protocol.

Using the Bundle Security Protocol to implement error-

detection has some drawbacks, in that different responses

are likely required between legitimate errors and attacks,

and checking the reliability of secured payloads is not

possible at intermediate agents that have the necessary keys

withheld from them.

The mutable canonicalization rules of the Bundle Protocol

mean that coverage of metadata and the primary and

payload blocks can vary considerably depending on the

rules used. Using a ciphersuite that requires a private key to

decode or check header fields that are included via

canonicalization means that protection of those headers

against corruption is is only available where that key is

available.

We have proposed a workaround to add reliability into the

existing protocol infrastructure. This approach uses the

bundle security specification and ‘wraps’ the bundle

payloads and non-mutable header data in the primary

bundle block using an insecure “null-keyed” reliability-only

ciphersuite using a well-known key, rather than an actual

security ciphersuite that only provides a reliability check as

a side-effect of security [15]. The null-keyed ciphersuites

provide integrity protection against non-hostile causes of

errors, such as bugs in reassembling fragments or accessing

memory, corruption of memory due to radiation events, etc,

rather than providing security services such as non-

repudiation or sender authentication.

Like the Bundle Protocol, the Licklider Transfer Protocol

(LTP) [16], a bundle convergence layer developed to carry

bundling over private Consultative Committee for Space

Data Systems (CCSDS) space links, did not include

inherent error detection, but did define optional security

extensions. The idea of using a shared well-known key to

repurpose security for a reliability function originated here

[17]. This makes implementing the optional security suite

mandatory for reliability purposes. LTP is able to use this

successfully because its purpose is to provide point-to-point

communication without other nodes in the middle. We show

that reuse of LTP’s approach to reliability for the bundle

protocol is weak, because checking the reliability of bundles

at bundle agents in the middle of the network, between

source and destination, is needed to increase performance

across challenging networks. This also ignores the

possibility of errors in storage, processing or reassembly

internal to a bundle agent and host.

These reliability and performance problems are illustrated in

figure 3, where two bundles travel across a DTN network

with intermittent link connectivity indicated by the dashed

lines. The dark bundle contains a Payload Integrity Block

(PIB), signed with a security ciphersuite of key known only

to the source and destination. The light bundle has a PIB

using an insecure null-keyed reliability-only ciphersuite,

that always uses the well-known key contained within its

specification, and which can be checked by any node

knowing that well-known shared key.

It does not matter whether the dark bundle is confidential

with a Payload Confidentiality Block (PCB) or merely a

PIB authenticated only at endnodes; what matters is how

widely its key is known.

In steps a. and b., custody transfer takes place. The bundle

agent at the second node takes ownership of the bundles,

but can only check the light reliability-only bundle for

receipt without errors. Without knowing the key for the

other dark bundle’s security association, the reliability of

the payload cannot be checked.

The custody transfer acknowledgement sent back to the

source as an administrative record takes it on faith that no

errors were introduced, and that the bundle was delivered

entirely successfully by the convergence layer and any hop-

by-hop security, if implemented. That custody agent then

transfers the bundles onwards to the next node and bundle

agent in c. In our example, that node is hit with memory

corruption during long-term storage of the bundles in d.

The agent on that node is unable to check the integrity of

the encrypted payload in the dark secure bundle, and so

forwards it not knowing of its corruption. However, the

agent has the ability to check the payload of the light

reliability-only bundle before sending it on, and so can use

the reliability check to detect errors, before sending that

reliability-only bundle onwards. This error detection can be

used to cause a request to be sent to the custody transfer

node for an uncorrupted copy of the reliable bundle.

The corrupted but security-protected dark encrypted bundle

travels onwards in steps e. and f., and is only discarded once

it reaches the destination application, which decrypts the

bundle payload and attempts to use it. At that point, the

application at the endpoint must detect the corruption,

which is indistinguishable from an attack, and then re-

request the encrypted bundle from the distant custody

transfer node in g.

 6

a. source destinationsource destination

b. source destination

custody
transfer
receipts

source destination

custody
transfer
receipts

c. source destination

originals
discarded

new
custodian

source destination

originals
discarded

new
custodian

d.

source destination

originals
discarded

memory corruption
of bundles

new
custodian

source destination

originals
discarded

memory corruption
of bundles

new
custodian

e.

source destinationfails insecure
ciphersuite check

before sending

no way of verifying content.
presumed good and sent on.

resend
requested

source destinationfails insecure
ciphersuite check

before sending

no way of verifying content.
presumed good and sent on.

resend
requested

f. source destinationdiscarded; re-requested.

PIB fails check;
discarded

source destinationdiscarded; re-requested.

PIB fails check;
discarded

g. source destination

rerequest
secure
bundle

source destination

rerequest
secure
bundle

h.

source destination
Insecure bundle that can be

checked in-transit has arrived faster.

source destination
Insecure bundle that can be

checked in-transit has arrived faster.

secure PIB

insecure

ciphersuite

understands shared reliability and private secret keys

understands shared keys for reliability only

secure PIB

insecure

ciphersuite

understands shared reliability and private secret keys

understands shared keys for reliability only

Figure 3 – performance problems with bundling

Meanwhile, the light insecure reliable bundle has already

been resent, and a useful copy of that insecure bundle

arrives at the destination, before a resent dark secure

bundle, in h.

This is an example of the parts of the network helping

performance of traffic, in accordance with the end-to-end

principle, by using separate tighter control loops than

application-to-application end-to-end. The applications’

control loop is open when there is no direct connectivity

between source and destination in an ad-hoc delay-tolerant

network. We use the example of memory corruption

because it is something that ‘reliable’ convergence layers or

hop-by-hop security protocols cannot address, as it happens

outside the links and subnets that they cover. This can

happen in memory and storage subsystems internal to a

host, and studies have indicated that it is not uncommon

[18][19]. (However, it should be noted that requesting

retransmission of a bundle may be unacceptable from a

security standpoint, as it would be possible for an attacker

to create an amplification and redirection attack by sending

spoofed bundles, causing retransmissions that consume

network resources. That would be addressed by an

authentication framework. We discuss this later in the

section on security.)

Performance for encrypted payloads can be improved in this

scenario by having secured bundles ‘wrapped’ within an

outer reliability checksum block that is applied to the

bundle after payload blocks are encrypted. This gives the

best of both worlds, providing the benefits of an end-to-end

reliability check, error detection throughout the bundle’s

travels that makes custody transfer meaningful, and the

performance boost that comes from tighter control loops for

resends within the network that do not involve the

application endpoints, while at the same time implementing

security by also using the Bundle Protocol’s security

mechanism. For secured payloads, it would be necessary to

nest a secured payload within an outer reliability check,

much as an IPSec packet can nestle in an Ethernet frame

with a strong Cyclic Redundancy Check (CRC) across the

entire packet and frame, so that third-party nodes lacking

keys to content can check that they have reliably received

and are reliably relaying unknown content. The security

mechanisms are completely applied before the reliability

check is computed, so that there is no security risk – just as

there is no security risk from computing an Ethernet CRC

for a frame containing an IPSec packet. Figure 4 shows how

existing ciphersuites can be reused to achieve this.

This concept of nesting or 'wrapping' already exists in the

Bundle Protocol, for security gateways. Here, we are

suggesting that every node is also its own 'reliability

gateway, and that whenever a security block with private

keys is applied, a reliability block using shared keys should

be applied afterwards, covering the security block, so that

the robustness of the bundle can be checked in transit in the

network. Alternatively, another approach to gain the

 7

performance of reliability with end-to-end security is for

applications to implement their own end-to-end-security,

tunnelling their own encrypted application payloads through

the Bundle Protocol, using the Bundle Protocol’s security

mechanisms only for reliability, and not nesting security

blocks. Not relying on the security mechanisms offered by

the Bundle Protocol can increase overall performance in this

case.

A reliability block using an insecure cipher, but with a zero-

length payload, will still cover and protect several non-

mutable header fields in the primary payload block. This is

a complex way of implementing a header-only checksum.

In [4] it is claimed that reliability is best left up to the

application. In an ad-hoc network, there is unlikely to be a

direct end-to-end connection between applications, leading

to an open loop rather than the closed loop expected in

terrestrial networks, and poor resulting performance, as

shown in Figure 2. [4] does not distinguish between the

need to always protect headers (metadata) and optionally

protect payloads if the payloads cannot tolerate errors. It

would be useful if custody transfer provided that facility,

confirming that metadata was received correctly, and

optionally that bundle payloads were received correctly,

too, if protection against payload errors is required. We

expect that protection against payload errors is desirable and

will be more common than the alternative. Protection

against errors in metadata is clearly very desirable, given

the expense of mishandling, and the need to use the DTN’s

limited connectivity efficiently.

If leaving reliability up to the application is reasonable to do

for DTNs, as [4] claims, without assistance from the

network to increase performance, then by that same logic

security is best left solely to the end-to-end applications as

well, and should not be contributed to by the network. And,

for the existing Bundle Security Protocol and our reliability

work leveraging that, applications implementing their own

security and only using reliability ciphers in the bundle

network can get increased performance from the bundle

network, as we have outlined in our scenario.

[4] makes an analogy with IP removing the header

checksum when going to IPv6, leaving error-detection to

higher layers checking the IP pseudo-header checksum.

That is presented as a justification for leaving error

checking out of the Bundle Protocol, but can easily be

argued against. First, IP in a terrestrial network exists on an

end-to-end path where there is a tight control loop, as

shown in figure 2. If an IP packet is received errored at the

destination, the request and resend can happen quickly

thanks to that tight, closed, end-to-end control loop.

The IPv4 header checksum was removed from the IPv6

design to prevent repeated computation of the checksum

due to changing fields such as the time-to-live (TTL) count.

can be verified at
each intermediate node,
leading to faster resends
and tighter control loops

PIB or PCB secure bundle
where keys are only known

to endpoints
insecure payload using
INSECURE ciphersuite

can also be used by applications
implementing their own e2esecurity
for increased help from the network

opaque to
intermediate nodes;
longer control loops

a. Existing use of secure and insecure ciphersuites

secure end-to-end
payload

wrapping end-to-end
reliability checksum

in insecure ciphersuite

reliability can now be checked at
each node; allows for fast resends

if errors are detected

b. proposal to combine wrapping of ciphersuites for

increased performance from the network

Figure 4 – Comparison of approaches to reliability

giving different performance from the network

It would have been possible for an IPv6 header checksum to

be designed to only cover ‘non-mutable’ fields. It is

possible for routers to check the pseudo-header checksum to

verify the reliability of each IP packet, but this is not done

in practice due to the following reasons:

• emphasis on processing speed,

• the carriage of unfragmented IPv6 packets in outer

framing such as Ethernet, with strong cyclic

redundancy checks (CRCs),

• the lack of explicit fragmentation of IP meaning

that reassembly errors are normally not a concern

for higher layers, and

• awareness of the tight control loops that make

resends easy once the pseudo-header is checked

and found wanting at the endpoints.

DTN networks do not have the tight end-to-end control

loops of terrestrial IP networks. In a DTN there may be no

direct connectivity between endpoint applications at all.

DTN networks are expected to have significant amounts of

fragmentation of bundles, both at the sending nodes (called

proactive fragmentation) and within the network (called

reactive fragmentation). There is a need to check

 8

reassembly of fragmented bundles. By contrast,

fragmentation of IPv6 packets is only possible at the

sending endpoint, and en-route IPv6 packets can not be

fragmented once in the network.

Sending data in many DTN networks can be expected to be

more expensive in terms of slow rates, power use, etc.,

leading, as our example has shown, to a distinct

performance advantage to nodes able to use a reliability

check on each bundle. Network architectures with different

designs for different conditions have a different set of

tradeoffs. Appealing to a design for a terrestrial IP network

to justify design choices for a different network, where

control loops and tradeoffs are entirely different, is not

justifiable.

In our experiments with an operational DTN satellite sensor

network, we have implemented an optional MD5 checksum

for the Saratoga protocol to provide a measure of reliability

checking. This can be used to compare hash values of files

before and after downloading. This provides protection in

the convergence layer over the most error-prone hop

between bundle agents, but not end-to-end between the

application source and sink. On the relatively low-end

processors typical of spacecraft or embedded devices, that

MD5 computation can take several minutes to run over a

large file, so it is likely to be used sparingly onboard. Given

that image data is often downloaded in ‘one shot’ before

being deleted to make room for new images, and

postprocessed heavily with human inspection, the need to

resend image files with slight corruption is minor, although

knowing where that corruption may lie in the image data

would be useful. However, overall reliability checking

becomes very important when e.g. uploading code to be

executed.

4.2 Time synchronization problems

The Bundle Protocol assumes that all communicating

bundle nodes share a common, simultaneous, synchronised,

conception of UTC time so that its timestamps can be

interpreted and handled correctly. There are three primary

goals for timestamps in the Bundle Protocol. These goals

relate to network and agent resource protection and

efficiency:

• the Lifetime keeps bundles from looping continuously

throughout the network due to routing loops, similar to

IP’s Time-To-Live (TTL) counter;

• the Lifetime spare the network from storing and

propagating bundles after a time that the sending

application has designated the data as no longer useful.

• The Creation timestamp information can uniquely

identify the bundle, necessary for assembly of bundle

fragments. This is a similar role to the Identification

field in the IPv4 header.

During our initial testing in terrestrial networks, it became

clear that network time synchronization is critical. That is

probably not a reasonable requirement for many DTN

networks, as nodes in many DTN networks will be isolated

and disconnected for long periods of time.

Furthermore, the Bundle Protocol is a network overlay, and

one that may be running on top of ad-hoc networks in

highly stressed environments, effectively at the application

layer as far as the ad-hoc network is concerned, The

requirement that all DTN networks running the Bundle

Protocol must be synchronized to enable interoperation is

not necessarily one that is either practical or deployable.

Our clock synchronization problem with bundling was

experienced during initial terrestrial use of the Bundle

Protocol. All of our DTN bundle agents were originally

configured and tested at NASA GRC in Cleveland, Ohio.

One bundle agent was sent to Guildford, England. A second

was sent to Universal Space Networks (USN) in Alaska.

When performing initial bundle transfers from SSTL to

GRC to USN across the public Internet, it was noticed that

the machine clocks had drifted sufficiently enough during

shipping to result in the bundle creation time stamps being

out of synchronization. Bundles generated by the “dtnping”

application used for configuration testing were therefore

rejected due to lack of tight time synchronization between

system clocks, leading to unexpected early expiry of the

bundles. Once the machines were resynchronized with a

common clock reference, bundle transfers operated

correctly.

With scheduled low Earth orbit passes over a ground

station, it is necessary to know what the time is to support

the pass opportunity. However, in our initial testing of the

Cisco router in Low Earth Orbit [20], nodes in the field at

Vandenberg were still able to operate with clocks set

several minutes adrift; the loosely-coupled architecture used

there tolerated this.

It appears possible to reduce problems related to time

synchronization, that we discuss in this and following

sections. This would be done by making small

modifications to the primary bundle block format and/or

changing the semantics of the creation timestamp and

lifetime field to more directly implement their three goals.

However, proposals to do so have not been fully fleshed out

or evaluated by the community.

4.3 Problems in learning the current time

Expecting DTN nodes with loosely-coupled ad-hoc

connectivity to be tightly coupled with respect to their

understanding of clock time has interesting ramifications.

A side effect of requiring synchronized clocks is that it

would not be possible for a node to learn the correct time

using the Bundle Protocol, as its bundles sent asking for the

time are likely to be judged expired or invalid and be

discarded. Another protocol would be required to do clock

 9

‘housekeeping’. One approach to implementing this other

protocol would be to have nodes assign clock confidence

levels to themselves. A node that has rebooted would have a

clock time of earlier than a starting date of e.g. 1 January

2008, and a confidence level of zero. Nodes with their own

internal clocks would have higher confidence levels,

depending on the accuracy of the clock. Nodes with low

confidence levels can receive and accept current time from

authenticated nodes that they trust with higher confidence

levels.

Furthermore, for network-centric operations involving

diverse organizations, it may not be possible from a security

standpoint to accept time reference data from nodes

operated by a different organization, even though data

communications with that organization are deemed

acceptable. Authentication of the provenance of the time

information received over some protocol other than the

Bundle Protocol, and outside of the Bundle Protocol's

authentication mechanisms, is an interesting problem.

Time synchronization for interplanetary use was noted as a

problem by Vint Cerf [21]. Others have noted similar

problems with synchronization [22]. Problems caused by

differences in clock times due to Einstein’s relativity are

unlikely to be noticed in any near-term deployment.

443 The selected time standard

The Bundle Protocol uses Coordinated Universal Time

(UTC), where leap seconds are added at irregular,

unpredictable, intervals to reflect slowing of the Earth’s

rotation. For nodes ‘in the field’ for a long time (decades),

some way of communicating newly-decided UTC leap

seconds will be required to prevent clock drift over long

time scales that would eventually lead to bundles expiring

before delivery. This is most likely to be a significant issue

for real-time traffic with very short bundle lifetimes.

4.5 The roles of convergence layer adapters

Direct TCP and UDP convergence layers are in already in

experimental use for carrying bundles across the terrestrial

Internet, though these convergence layers are not yet agreed

on by implementers and are still in the process of being

documented [23][24]. Different UDP implementations are

currently only compatible when sending bundles that fit

within single UDP datagrams without convergence-layer

fragmentation.

The simple UDP convergence layer implemented in existing

DTN software, including DTN2 dtnd, is unreliable,

providing a bundle agent with performance that differs

considerably from a convergence layer supporting

reliability, such as TCP, Saratoga or LTP. The community

has yet to determine whether, and how, the UDP

convergence layer should comply with recommendations

for UDP-based protocols [25].

The more well-defined convergence layers have differing

intended operating environments and underlying stack

dependencies. Saratoga relies on UDP, while LTP is

intended to be used over CCSDS protocols. LTP is

supported over UDP as well for testing; LTP would not

support a pseudo-header check, discouraging carrying LTP

directly over IP. UDP and IP can also be carried by CCSDS

protocols in a variety of ways, but have not traditionally

been used by most CCSDS-based space missions. Other

ways of building upon UDP are also possible, e.g. the Uni-

DTN convergence layer for unidirectional links, which

relies on the FLUTE erasure coding UDP multicast protocol

[25].

To complicate matters, convergence layer adapters have

been proposed and written that run directly over data links,

e.g. Ethernet or Bluetooth, as well as over file-based

portable storage media like USB “thumb-drives”.

These convergence layers obviously have widely varying

expectations and properties that the bundle agents can

depend or rely on, leading to differing behaviour at the

Bundle Protocol level. (The potential for use with long-term

storage media, rather than with store-and-forward network

protocols, was one motivation for including timestamps

using a universal clock within the bundle protocol.)

The possibilities for carrying the Bundle Protocol over a

variety of convergence layer adapters are shown in figure 5.

A further challenge and complication to the scoping of a

convergence layer adapter’s role is that some convergence

layer adapters contain their own store-and-forward

capabilities in addition to those of the bundle agent.

Saratoga is one example, with file storage actions. LTP is

another such example. An LTP-T variant has even been

proposed as a way to add source-routing capabilities to LTP

which can blur the need for a bundle agent in some

deployment scenarios [27].

direct

over UDP
(not yet agreed)

Bundle Protocol

UDP
User Datagram Protocol

TCP

Transmission

Control Protocol
(widely used,

but some deployment

differences)

Saratoga
Licklider

(LTP)

IP

Internet Protocol

Data-link: Ethernet, Frame Relay, etc.

CCSDS

protocols

for custom

space links

Direct

convergence

layer

adapter

other
e.g. Uni-DTN

over FLUTE

direct

over UDP
(not yet agreed)

Bundle Protocol

UDP
User Datagram Protocol

TCP

Transmission

Control Protocol
(widely used,

but some deployment

differences)

Saratoga
Licklider

(LTP)

IP

Internet Protocol

Data-link: Ethernet, Frame Relay, etc.

CCSDS

protocols

for custom

space links

Direct

convergence

layer

adapter

other
e.g. Uni-DTN

over FLUTE

Figure 5 – Major convergence layer choices

 10

This is similar to the concept of “extended operations” in

the CCSDS File Delivery Protocol (CFDP) [28], which

itself bears several similarities to the capabilities touted for

a bundle agent in providing reliable store-and-forward

services. A space probe using CFDP would not need

bundling, and vice versa – unless there is a desire to use one

or the other’s programming interfaces or interoperate with

other systems based on either CFDP or bundling.

It is interesting that, although bundling is intended to work

over a wide range of networks and protocols via

convergence layers, most of the use and development of the

Bundle Protocol has been over IP. IP provides a shared

working base that is popular, widely implemented, and

well-understood. Furthermore, since “IP over everything” is

already well-accepted and numerous research and

development projects are continuously extending the

breadth of IP networks, it makes for IP-based convergence

layer adapters to be specified and documented and for

bundle agents to bootstrap configuration parameters from

the IP-based convergence layer protocols whenever

feasible.

Using IP-based convergence layers, rather than attempting

to map the bundle protocol directly onto link protocols,

makes sense architecturally, because it limits the number of

bundle protocol specifications for mapping that have to be

created and documented. The engineering and development

costs are contained. Since IP-to-datalink mappings are

either already written, or are typically concurrently written

with the development of new datalink technologies, the

availability of standard IP-based DTN convergence layer

adapters leads to “DTN over everything” by proxy, with

very little additional systems integration or expense

required. Literally hundreds of documents could be written

over the years for carrying the Bundle Protocol over a

variety of different data links with different convergence

layer adapters. This is avoided entirely if IP-based

convergence layers, capable of working in a broad set of

environments, can be adopted.

Configuration information, e.g. TCP port numbers, IP

addresses, etc., is needed for bundle agents to work with

convergence layer adapters, along with an indication of

what bundle agents can be reached through the convergence

layer adapters. This information would be provided and

exchanged as part of a routing protocol, but is currently

entered manually in experiments with DTN software.

Methods for bundle agents to autoconfigure and

autodiscover each other in IP networks have not been

pursued by the DTNRG, though some groups have

experimented with different techniques. It is not clear that

aiding in configuration belongs within the role of the

convergence layer adapters or not.

4.6 Maximum transmission sizes and fragmentation

There is currently no method for advertising or negotiating

the maximum size of a bundle that can be accepted by a

bundle agent for storage and delivery, so that bundles that

are too large can be rejected. This can also lead to

fragmentation of bundles in the network. Handling reactive

fragmentation, with delivery and reassembly of bundles

split in the network, whose fragments take different routes

to the destination, is an open problem with reliability

implications.

The interactions and effects of fragmentation on other parts

of the DTN architecture are not yet well explored. For

instance, reactive fragmentation is known to cause

complications with the proposed bundle security protocol

[14] and with custody transfer. A solution for allowing the

security mechanisms to function in conjunction with

reactive fragmentation has not yet been selected, though

there are proposals for either sending signatures covering

fragments at a later time, or for proactively including

multiple authentication codes across pieces of the bundle

(called the "toilet paper" scheme [29]). These have

advantages and disadvantages that must be weighed.

Custody transfer of fragments has been discussed [10], but

is not part of the Bundle Protocol specification.

We believe that useful bundles will be large, and have

experimented with sending bundles of sensor data of over

one hundred megabytes in size from space. We expect large

fragments to be common and useful. Schemes to implement

reactive fragmentation should be carefully considered.

4.7 Agreement on naming schemes

Different Bundle Protocol implementations are currently

supporting multiple different naming schemes for Bundle

Protocol Endpoint Identifiers (EIDs), with different rules

for forming and interpreting EIDs. This is not necessarily a

bad thing, as different operational environments may have

different requirements for naming and addressing, and it

avoids the difficulty of trying to create a one-size-fits-all

scheme. However, it does lead to some interesting open

research questions.

The built-in naming flexibility gained by using a generic

Uniform Resource Identifier (URI) format for Bundle

Protocol EIDs remains to be put to its full use. The URI

scheme is intended to indicate how the remainder of the

EID string should be parsed. However, the DTNRG has not

yet rigorously specified or adopted any common EID

schemes, and additionally, rules for what to do with

unrecognized EID schemes have not been defined.

A basic scheme that facilitates initial testing and

implementation would be helpful, and would provide a

common base for which multiple implementations could be

expected to interoperate regardless of their support for other

EID schemes. As routing to destinations is meant to be

based on EIDs, a common EID format becomes a

prerequisite for routing between different DTN networks.

 11

Since the EID is the sole basis to identify the upper-layer

protocol machines above the bundle protocol, a common

property of all EID schemes seems to be the need to mux

and demux traffic between different protocol machines

registered to the same bundle agent. This would be

accomplished via a mechanism similar to the next-protocol

field in IP packets, or the port numbers and service codes in

Internet transport protocols. If common EID schemes can

not be defined for some reason, then at least defining a

standard way to include mux/demux tokens within an EID

would be useful.

An EID specifies a group of bundle agents, rather than a

single agent. How bundles are delivered successfully to this

group, so that the equivalent of multicast can be carried out

and applications can rely on sending to group EIDs, is an

open question.

4.8 Standardization of routing methods

The need for common routing protocols and address

resolution techniques is related to the issue of common EID

schemes for naming of destinations. An EID is essentially

an identifier with the late-binding operation that determines

the route a bundle takes. Resolving a destination EID into

one of a local registration, a next hop bundle agent, a

convergence layer adapter, or even a particular convergence

layer adapter address are all possible paths within a bundle

agent’s processing. As no resolution protocols comparable

to DNS, ARP, or SIP, and no routing protocols with

features similar to RIP, OSPF, or BGP have yet been

defined, there is much fruitful work to be done in this area

of the DTN bundling architecture. A large challenge would

be in defining mechanisms that are independent of a

particular convergence layer adapter or operational

environment. If this is not possible, then it makes “DTN

over everything” more difficult, as routines for such

operations have to be created per-deployment.

Forwarding without any automated routing or resolution

protocol is possible through several means:

• if static routes are configured at each node, which is

the antithesis of the ad-hoc DTN networks that

bundling is intended for.

• if source routing is used, perhaps as a new bundle

option.

• if the EID scheme itself implies forwarding rules

somehow through clear use of hierarchy, which can be

thought of as a form of source routing.

Automated routing protocols increase scalability, reduce

operations and management overhead, and enable

operations in completely ad-hoc settings.

It seems likely to us that a number of subnet-specific

routing protocols will be needed in order to enable the

Bundle Protocol to perform well across the highly diverse

range of environments that it is envisioned for. (The Bundle

Protocol is already relying upon IP routing protocols to run

across the terrestrial Internet.) This again represents the

utility in clearly specifying and documenting IP-based

convergence layer protocols, because it means that existing

IP routing and resolution mechanisms can be employed

without re-inventing the wheel and re-learning painful

lessons in routing for DTN.

Interconnecting different DTN networks poses problems

with gateways and sharing of routing information, possibly

leading to the separate internal and external routing models

used by the Internet – which is vastly complicated by the

late binding to addresses of EIDs. With late binding,

mapping EIDs to individual subnetworks can be

problematic and even dangerous depending on the

properties of interconnection between subnetworks and the

mobility of EID owners between subnetworks.

The concept of using “regions” as one component of an EID

was proposed as a way to distinguish particular

subnetworks in an EID. However, this is very problematic

in the general sense because it leads to difficulties in

multihoming by naming an interface (or set of interfaces)

rather than a host (or application process, or set of

application processes), as was known already during the

early Internet build-up [5]. There has been question of

whether a region relates to either a common field of control,

a high probability of interconnection, or a spatial area. In

some discussions, the notion of regions has been attempted

to be supplemented by the notion of “domains”, but there is

still a lack of clarity in what these terms imply and do not

imply, and not yet agreement on how to handle inter-

domain, inter-region, inter-EID-scheme, or other types of

routing decisions.

Agreement on a very basic routing protocol that simply aids

in testing and debugging but is not expected or required to

perform optimally (similar to RIP for IP), would be useful

in these early phases of DTN test and development.

Methods for auto-discovery of bundle agents have been

proposed and tested, but not yet fully adopted in the

DTNRG. Building on auto-discovery, methods of

distributing advertisements of routes and predicted contacts

would greatly increase the capabilities of the Bundle

Protocol and bring it closer to the state needed for

operational benefit.

4.9 Network management

DTN nodes currently have no support for remote

management, which is common in IP networks.

For an operational DTN, it would be very useful to have

some type of network management capability, similar to the

features of the Simple Network Management Protocol

(SNMP) in IP networks. This capability could be used to

report on node health, storage issues, undeliverable bundles,

 12

performance data, and so on. It could be used to remotely

(re-)configure a bundle agent through sending network

management bundles to conditionally fetch and set

configuration parameters.

A powerful network management protocol might even be

able to share functionalities with a DTN routing protocol, as

it could be used to add/remove and enable/disable routes on

the bundle agents under control.

However, the long delays and link disruptions that increase

or break end-to-end control loops in DTN networks also

make network management more difficult. It is likely that

network management would be subnet-specific, using a

subnet-specific protocol, e.g. SNMP over IP, rather than the

Bundle Protocol itself. Management of the overlay running

the Bundle Protocol is distinct from management of the

underlying network. Combining these into a single system

has a number of technical and other tradeoffs.

Little work has yet been done on DTN network

management, though it seems to be essential in some

proposed scenarios where DTN bundle agents are to be

operated as long-term infrastructure elements. Our

experiences with problems in time synchronization suggest

that DTN network management based on the Bundle

Protocol will be somewhat complicated, as bad

configurations may be impossible to fix without using

bundles with very long lifetimes and/or spoofed creation

timestamps – which would be undesirable in the network.

4.10 Quality of Service

IP network infrastructure supports an array of Quality of

Service (QoS) mechanisms and mappings between different

subnetwork QoS mechanisms and IP QoS mechanisms. The

bundle protocol has defined some bits to indicate one of

three priority levels in a bundle, but the semantics of these

levels are as yet undefined, so they cannot be effectively

used unless the handling behaviour is locally agreed on and

supported by all bundle agents.

Mechanisms for identifying, labeling, policing, and

otherwise providing QoS for bundle flows are not yet part

of the DTN architecture. The aspects of DTN QoS differ

from IP QoS as DTN makes heavier use of in-network

storage and has more complex routing decisions. The

interactions between late binding and QoS reservations may

also be complex.

One simple proposal is to consider a bundle flow to consist

of all bundles between the same two EIDs, and then use the

bundle priority field in per-flow priority queuing. This

would guarantee certain forwarding behaviours within

applications’ data flows, but still leaves the more difficult

problem of scheduling contention between flows as a matter

of local policy.

4.11 Efficiency of protocol overhead

The Bundle Protocol can be efficient in terms of metadata

overhead if bundles can be made large, but this is not

natural for all applications.

Our experiments from orbit transferred a 150MB image file

as a fragmented payload. There, the added overheads of the

bundle format were trivial, and were outweighed by the

overheads of Saratoga/UDP/IP packet headers in the

convergence layer.

However, some convergence layers, e.g. raw UDP

implementations, cannot handle large bundles, expecting a

bundle to fit into a UDP packet, and be less than 64KB in

size.

Recent discussions have questioned the suitability of DTN

for “small payload” transmissions such as real-time voice

codecs. This still appears to be an open issue.

4.12 Complexity and performance

The complexity of the Bundle Protocol’s design is shown

by its variety of optional fields, structures, and novel binary

formats [30].

The use of variable-length, rather than fixed-length, fields

with Self-Delimiting Numeric Values (SDNVs) and

Endpoint Identifiers, and the referencing back to the

dictionary in the primary block from later payload blocks

can make the Bundle Protocol more susceptible to parsing

errors from corruption than a more robust fixed-length

format. In a fixed-field format, an error in a field may

affects only that field. In variable-length SDNVs, a single

bit of each byte indicates whether the SDNV continues for

another byte. An error introduced into any of these bits of

an SDNV not covered by a canonicalization will affect

interpretation of that and everything that follows.

This complexity, including concepts such as the mutable

canonicalization rules used by security (and thus inherited

by reliability), can be considered as a hurdle for

implementation, interoperability, and adoption – especially

for those pieces of the design that have not yet been fleshed

out or agreed.

It would be difficult to be as ambitious and all-

encompassing as the Bundle Protocol and not be

complicated. However, much of that complexity lies in the

security protocols, on which much time and effort has been

spent.

4.13 Security

The bundle security mechanisms are not yet finalized as we

write, and some aspects of them remain to be completed. As

these are not yet finished, or fully evaluated in practice, it is

speculative for writers to make strong claims about the

 13

overall security properties of the bundling architecture. An

overview of those properties is given in [31]. There are

currently drafts defining methods to protect the integrity of

bundles between two hops and bundle payloads end-to-end,

as well as the ability to make a bundle block confidential.

These all rely on an assumption of shared keying material.

No method for automatically sharing this material is yet

defined within the bundle architecture, or proposed in any

DTNRG draft. Key management has been recognised as an

open problem [32].

The difficulties of applying typical IP security techniques,

such as established certificate systems, in DTNs are well-

known, with several research issues open and work to be

done if capabilities similar to those provided by IKE in the

Internet are to be available in DTNs.

Another interesting aspect of current Bundle Protocol

implementations is the lack of any features similar to the

firewalling or access control lists of typical IP networking

devices. In operational practice, these are absolutely

essential in contemporary IP networks, even though they

often result in frustrations when deploying new services and

mobile devices. In DTNs with the emphasis on late-binding

it seems that this may be even more problematic, especially

since filter rules depend heavily on address formats and

DTN EID schemes are currently not fully-specified and the

architecture permits (and even encourages) a proliferation

of differing formats. There is interesting work to be done in

this area of how filter implementations can accommodate

diverse EID schemes.

The logic for building some means to authenticate bundles

has been justified as necessary to protect against denial-of-

service attacks against a bundle agent’s resources. This has

been shown to not be as large a threat in practice as

originally assumed [33].

We believe that a larger threat consuming network

resources exists in inadvertently forwarding errored,

unchecked, bundles that can only be checked and discarded

at the destination application. This problem is prevented by

the reliability checks discussed earlier, and by introducing a

check across bundle contents before acknowledging a

custody transfer or on reassembly of fragments or

retransmission.

4.14 Content identification

The Bundle Protocol does not identify the content it carries

to select an application to hand the content off to. There is

no notion of something similar to an IP port number or

protocol ID, or type field, that can be used to pass bundles

to higher-layer protocols or applications. This can lead to

each EID scheme also supporting some way of indicating

applications through the EID, with every application

appearing as its own bundle node in the EID space – a

problem reminiscent of creation of all the vanity domain

names for webservers in the Internet’s DNS.

It can be argued that the web and email have become

successful at delivering content partly because it is so easy

to determine what application should be invoked to receive

a delivered file, due to their universal adoption of MIME

[34]. It is reasonable to expect the Bundle Protocol to adopt

MIME as well.

5. OTHER APPROACHES TO DTN NETWORKING

Just as an internet consists of multiple connected networks,

and the Internet has special meaning implying certain

protocols used in a certain way, delay-tolerant networking

environments are larger in scope than the single DTN

architecture that has been proposed for them by the

DTNRG. The Bundle Protocol is just one single approach to

addressing the problems posed by delay-tolerant

networking. Other approaches to delay-tolerant networking,

that do not require the Bundle Protocol, are possible.

We suggest a simple approach, leveraging existing

standards, using the Hypertext Transfer Protocol (HTTP) as

a transport-layer-independent ‘session layer’ between each

two communicating DTN nodes, hop-by-hop, as shown in

figure 6 [35]. HTTP is well-understood by applications in

the same way that IP is well-understood, easing adoption.

New Content-Source: and Content-Destination: headers are

added, which provide routing information end-to-end.

Content- headers are treated specially by HTTP: HTTP

servers must reject transfers with unknown Content-

headers. Adding these two new headers creates a separate

DTN network that will not interact with or affect existing

traditional web use of HTTP. Reuse and implementation of

HTTP in this way to create HTTP-DTN appears

straightforward.

Fitting HTTP to Saratoga for long-delay or private

networks is possible; HTTP does not contain timers, and

with persistence, pipelining and unidirectional PUTs, can

work over long distances. HTTP is already widely used

over TCP across the shared, congested, Internet, and has

been proposed for use over SCTP, separating HTTP from

the underlying transport [37].

The two bundle hops used in our operational sensor satellite

scenario – transport of the bundle over Saratoga from the

UK-DMC’s SSDR computer to the bundle agent in a

computer in the ground station, then transport of the bundle

over TCP across the Internet to NASA Glenn – would be

replaced by two HTTP-DTN hops: HTTP-DTN transfer of

the image file over Saratoga between satellite and ground

station, then an HTTP-DTN transfer over TCP between

ground station and NASA Glenn’s computer.

 14

Content-Source: Content-Destination:

first HTTP transfer second HTTP transfer third HTTP transfer

Figure 6 – HTTP-DTN transfers end-to-end

The Content-Destination: header would be set to indicate

the domain name of the destination NASA Glenn computer.

In applying HTTP-DTN to our test scenario, the destination

is resolved with late binding on the last HTTP-DTN hop,

which is across a subnet that understands that name using

DNS. (A static route is used on the wireless first hop for

traffic from satellite to ground station; everything goes

down the downlink.)

HTTP provides the ability to easily transfer content

identified by MIME. This provides the necessary content

identification that we have identified as missing from the

Bundle Protocol. Payload reliability can be addressed by

using the existing Content-MD5: header. HTTP has a

number of existing security protocols that could also be

evaluated for suitability for reuse in unusual DTN

conditions, on a case-by-case basis.

HTTP-DTN shares some of the same problems that we have

articulated for the Bundle Protocol – particularly the

assumption of synchronized time across nodes that makes

timestamp and Expires: headers useful, and problems with

ensuring end-to-end reliability of headers and indicating the

maximum size of MIME payloads that can be accepted.

However, by leveraging existing well-implemented

technologies, HTTP-DTN is far less work to specify,

understand, and implement than the Bundle Protocol, which

is a significant benefit.

We have given HTTP-DTN as an example of an alternative

to the Bundle Protocol because we are familiar with it and

details have been worked out. Other alternatives,

considering concepts implemented by uucp, netnews,

message-oriented middleware, or Fidonet (where “bundles”

were proposed [37]), could be fleshed out to be similarly

viable solutions for delay-tolerant networking scenarios.

CONCLUSIONS

Our practical experience gained with implementing and

operating the Bundle Protocol from space over an IP-based

sensor network enables us to consider aspects of the Bundle

Protocol’s design.

The lack of integrity checksums for reliability checks in the

Bundle Protocol and the need for network time

synchronization were found to be real deployment issues

during our first tests, and we are investigating new

checksum mechanisms to increase the performance and

reliability of the Bundle Protocol.

We have described a bundle of problems with the Bundle

Protocol as it currently stands. Though it is far easier to

criticise than to create, and easier to analyse something that

is being fleshed out in detail than it is to synthesize

something entirely new, it is hard to avoid recognising some

problems with the Bundle Protocol and its current design.

We hope that recounting those problems here will lead to

them being addressed in later versions of the DTN

architecture and Bundle Protocol specifications, as research

into delay-tolerant networking continues and these research

ideas are matured. Once these are addressed, the Bundle

Protocol may one day be ready for operational use.

ACKNOWLEDGEMENTS

We thank our colleagues for thoughtful discussion during

the gestation of the ideas presented here.

REFERENCES

[1] K. Fall, “A Delay-Tolerant Network Architecture for

Challenged Internets,” SIGCOMM, August 2003.

[2] V. Cerf et al., “Delay-Tolerant Network

Architecture,” IETF RFC 4838, informational, April

2007.

[3] K. Scott and S. Burleigh, “Bundle Protocol

Specification,” IETF RFC5050, experimental,

November 2007.

[4] K. Fall and S. Farrell, “DTN: an architectural

retrospective,” Journal of Selected Areas in

Communications, vol. 26 no. 5, pp. 828- 836, June

2008.

[5] J. Day, Patterns in Network Architecture, Prentice

Hall, 2007, ISBN 0-13-225242-2.

[6] L. Wood, W. Ivancic, W. M. Eddy, D. Stewart, J.

Northam, C. Jackson and A. da Silva Curiel, “Use of

the Delay-Tolerant Networking Bundle Protocol from

space,” paper IAC-08-B2.3.10, 59th International

Astronautical Congress, Glasgow, September 2008.

[7] “UK-DMC satellite first to transfer sensor data from

space using 'bundle' protocol,” Surrey Satellite

Technology Ltd press release, 11 September 2008.

[8] L. Wood, J. McKim, W. M. Eddy, W. Ivancic and C.

Jackson, “Saratoga: A Scalable File Transfer

Protocol,” work in progress as an internet-draft, draft-

wood-tsvwg-saratoga-02, October 2008.

[9] L. Wood, J. McKim, W. M. Eddy, W. Ivancic and C.

Jackson,, “Using Saratoga with a Bundle Agent as a

Convergence Layer for Delay-Tolerant Networking,”

work in progress as an internet-draft, draft-wood-

dtnrg-saratoga-04, October 2008.

 15

[10] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho and R.

Patra, “Implementing Delay Tolerant Networking,”

Technical Report IRB-TR-04-020, Intel Research

Berkeley, December 2004.

[11] DTN reference implementation, October 2007 release,

available from http://www.dtnrg.org/wiki/Code

[12] D. Waitzman, “IP over Avian Carriers with Quality of

Service,” RFC 2549, 1 April 1999.

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-

end arguments in system design,” ACM Transactions

on Computer Systems, vol. 2, no. 4, pp. 277-288,

November 1984.

[14] S. Symington, S. Farrell, H. Weiss and P. Lovell,

“Bundle Security Protocol Specification,” work in

progress as an internet-draft, draft-irtf-dtnrg-bundle-

security-06, November 2008.

[15] W. M. Eddy, L. Wood and W. Ivancic, “Checksum

Ciphersuites for the Bundle Protocol,” work in

progress as an internet-draft, draft-irtf-dtnrg-bundle-

checksum-03, October 2008.

[16] S. Burleigh, M. Ramadas and S. Farrell, “Licklider

Transmission Protocol – Motivation,” RFC 5325,

September 2008.

[17] S. Farrell, M. Ramadas and S. Burleigh, “Licklider

Transmission Protocol - Security Extensions,” RFC

5327, September 2008.

[18] J. Stone, M. Greenwald, J. Hughes, and C. Partridge,

“Performance of checksums and CRCs over real

data,” IEEE Transactions on Networks, vol. 6 issue 5,

pp. 529-543, October 1998.

[19] J. Stone and C. Partridge, “When the CRC and TCP

checksum disagree,” Proceedings of ACM Sigcomm,

pp. 309-319, September 2000.

[20] L. Wood, W. Ivancic, D. Hodgson, E. Miller, B.

Conner, S. Lynch, C. Jackson, A. da Silva Curiel, D.

Shell, J. Walke and D. Stewart, “Using Internet nodes

and routers onboard satellites,” International Journal

of Satellite Communications and Networking, vol. 25

issue 2, pp. 195-216, March/April 2007.

[21] J. Jackson, “The Interplanetary Internet,” IEEE

Spectrum, vol. 42, no. 8, p. 30, August 2005.

[22] W. M. Eddy, “DTN Time Sync Issues,” email to the

IRTF dtn-interest mailing list, 1 April 2008, and

subsequent discussion.

[23] M. Demmer and J. Ott, “Delay Tolerant Networking

TCP Convergence Layer Protocol,” work in progress

as an internet-draft, draft-irtf-dtnrg-tcp-clayer-02,

November 2008.

[24] H. Kruse and S. Ostermann, “UDP Convergence

Layers for the DTN Bundle and LTP Protocols,” work

in progress as an internet-draft, draft-irtf-dtnrg-udp-

clayer-00, November 2008.

[25] L. Eggert and G. Fairhurst, “Unicast UDP Usage

Guidelines for Application Designers,” RFC5405,

November 2008.

[26] D. Kutscher, K. Loos and J. Greifenberg, “Uni-DTN:

A DTN Convergence Layer Protocol for

Unidirectional Transport,” work in progress as an

internet-draft, draft-kutscher-dtnrg-uni-clayer-00,

April 2007.

[27] S. Farrell and V. Cahill, “Evaluating LTP-T: A DTN-

Friendly Transport Protocol,” Third International

Workshop on Satellite and Space Communications

(IWSSC '07), September 2007.

[28] CCSDS File Delivery Protocol (CFDP), Consultative

Committee for Space Data Systems Blue Book, Issue

4, January 2007.

[29] C. Partridge, “Authentication for fragments,” ACM

SIGCOMM HotNets- IV workshop, 2005.

[30] W. M. Eddy, “Using Self-Delimiting Numeric Values

in Protocols,” work in progress as an internet-draft,

draft-irtf-dtnrg-sdnv-00, September 2007.

[31] S. Farrell, S. Symington, H. Weiss and P. Lovell,

“Delay-Tolerant Networking Security Overview,”

work in progress as an internet-draft, draft-irtf-dtnrg-

sec-overview-05, November 2008.
[32] S. Farrell, “DTN Key Management Requirements,”

work in progress as an internet-draft, draft-farrell-

dtnrg-km-00, September 2007.

[33] J. Burgess, G. Bissias, M. Corner and B. Levine,

“Surviving Attacks on Disruption-Tolerant Networks

without Authentication”, Proceedings of the 8th ACM

international symposium on Mobile ad hoc

networking and computing (MobiHoc), Montreal

2007, pp. 61-70.

[34] N. Freed and N. Borenstein, “Internet Mail Extensions

(MIME) Part One: Format of Internet Message

Bodies,” IETF RFC 2045, November 1996.

[35] L. Wood and P. Holliday, “Using HTTP for delivery

in Delay/Disruption-Tolerant Networks,” work in

progress as an internet-draft, draft-wood-dtnrg-http-

dtn-delivery-02, October 2008.

[36] P. Natarajan, P. Amer, J. Leighton and F. Baker,

“Using SCTP as a Transport Layer Protocol for

HTTP,” work in progress as an internet-draft, draft-

natarajan-httpbis-sctp-00, October 2008.

[37] W. Wagner, “A Bundle Proposal,” FSC-0014, January

1988.

BIOGRAPHIES

Lloyd Wood is a Chartered Engineer who serves as a space

initiatives manager and technical leader in the Global

Government Solutions Group within Cisco Systems.

There he has had responsibility for CLEO, the Cisco router

in Low Earth Orbit, for over five years. With colleagues

from NASA Glenn Research Center and Surrey Satellite

Technology Ltd, Lloyd achieved the first tests from space of

IPv6 and of the delay-tolerant networking Bundle Protocol.

Lloyd has contributed to the Internet Engineering Task

Force and modified IOS, Cisco's router software... software

now in space on CLEO. Lloyd gained his PhD from the

Centre for Communication Systems Research at the

University of Surrey, where he researched internetworking

and satellite constellations.

 16

Wesley M. Eddy is a network architect with Verizon,

contracted to NASA's Glenn Research Center (GRC). He

supports systems engineering and architecture development

for NASA communications systems and technology

development for network-centric operations using space

and aeronautical mobile networks. He wrote the bundling

code demonstrated on the UK-DMC satellite. He is co-chair

of the IETF TCPM Working Group and of the IRTF's

Internet Congestion Control Research Group (ICCRG). He

holds an M.S. degree from Ohio University.

Peter Holliday is a technical leader with Cisco Systems’

Global Government Solutions Group. He is a retired Army

Officer who has served over thirteen years in the Royal

Australian Corps of Signals. He received his BSc from

Queensland University of Technology, and his MEngSc at

the Australian Defence Force Academy from the University

of New South Wales, where he is currently undertaking a

PhD in military mobile ad-hoc and disrupted networks.

