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Abstract—Delay-Tolerant Networking” (DTN) is a 

neologism used for a new store-and-forward architecture 

and protocol suite intended for disrupted networks where 

there is intermittent or ad-hoc connectivity. This has been 

proposed as one approach to supporting delay-tolerant 

networks. Work in the late 1990s on the “Interplanetary 

Internet” forms the basis for current DTN protocols and 

architecture. That early work considered transport protocols 

robust to the hours-long propagation delays of deep-space 

communications. DTN is also known, primarily in military 

circles, as Disruption-Tolerant Networking, due to the 

dynamic links and outages in the military tactical 

environment, rather than long-delay links. In both cases, 

DTN technologies are well-suited to applications that are 

mostly asynchronous and insensitive to large variations in 

delivery conditions. DTN networks differ sufficiently from 

traditional terrestrial networks in their characteristics and 

connectivity that link, network and transport protocols must 

be carefully considered and chosen to cope with these 

different characteristics, or new protocols can be designed 

that are suited for the problems that these DTN network 

conditions impose. The “Bundle Protocol” exists within the 

DTN architecture, which sends bundles over subnet-specific 

transport protocols, called “convergence layers.” 

“Bundling” has undergone a large amount of shared 

development and design over a period of years as a research 

effort. We examine the Bundle Protocol and its related 

architecture closely, and discuss areas where we have found 

that the current Bundle approach is not well-suited to many 

of the operational concepts that it was intended to support. 

Problems with the Bundle Protocol and its convergence 

layers exist in mechanisms for error detection and overall 

reliability. This weakens the Bundle Protocol’s suitability to 

disrupted and error-prone networks. We show that these 

reliability issues can lead to performance problems in DTN 

networks, requiring mitigation. Open research and 

development areas also exist with design choices in 

handling timing information, in determining necessary and 

sufficient security mechanisms, in its Quality of Service 

capabilities, and in other aspects of application or content 

identification. We show that the existing DTN bundling 

architecture has a number of open real-world deployment 

issues that can be addressed. We suggest possible 

remediation strategies for these weak areas of the bundle 

protocol that we have been working on. We also look at 

alternate approaches to DTN networking. Rather than only 

providing criticism, this paper identifies open issues, where 

work on modifying the Bundle Protocol is encouraged and 

approaches to address its various problems are suggested. 
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1. INTRODUCTION 

The term “Delay-Tolerant Networking” stems from Fall’s 

seminal 2003 SIGCOMM paper, which introduced an 

architecture generalised from design work for the 

Interplanetary Internet [1]. The Delay Tolerant Networking 

Research Group (DTNRG) in the Internet Research Task 

Force (IRTF) began working on development of this 

architecture [2] and its Bundle Protocol [3]. The DTNRG 

community has enjoyed wide participation from experts in a 

variety of disciplines, with knowledge of a variety of 

diverse operating environments. 

The Bundle Protocol design is intended to meet the needs of 

widely divergent classes of networks including deep-space 

exploration, undersea networking, tactical military 

networks, ad-hoc networks, sensor networks, and other so-

called ‘challenged networks’ [4]. A bundle consists of a 

number of concatenated blocks, including common shared 

metadata (the ‘bundle header’ or ‘primary bundle block’) 

followed by a number of other payload blocks for varying 

purposes, as shown in figure 1. 

By design, the bundle specification that has been developed 

is mostly focused on the logical layout of the bundle format, 

rather than specifying the operations and interactions 

between the protocol entities, called “bundle agents”. It is in 

many ways more similar to a complex file format 

specification than to an internetworking protocol in this 

regard. This was purposefully done so that the details for a 

specific implementation or deployment scenario could be 

worked out later. For example, the operations for forming 

bundle protocol addresses in Endpoint Identifiers (EIDs) 

and forwarding bundles based on them are not yet defined.  
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Figure 1 – Basic bundle and block structure 

 

Nor are Quality of Service mechanisms, means for key 

exchange and establishment of security associations, or 

network management and monitoring protocols. 

This Bundle Protocol is intended to provide a general 

solution to networking for ad-hoc, delay-tolerant and 

disrupted networks. These networks can be said to have one 

characteristic in common: they are unlike terrestrial fixed 

networks in their link conditions and connectivity. They can 

vary in many other ways. This makes it very difficult to 

create a generalized networking solution that is suitable for 

a wide range of delay-tolerant networks. The Bundle 

Protocol alone does not solve the problems of networking in 

any of these environments. Rather, it is intended to provide 

a common format for store-and-forward networking 

messages and proposes that the availability of in-network 

storage in bundle agents will allow the challenges of these 

networks to be overcome. Many of the innovations that 

enable and support delay-tolerant network services should 

be understood as existing outside the basic Bundle Protocol 

itself, and as being largely independent of the Bundle 

Protocol. The Bundle Protocol requires significant 

supporting infrastructure to function, in convergence layer 

adapters, and in enhancements or additions for specific 

implementations or deployments. 

The Bundle Protocol always sits upon a local transport 

‘convergence layer’ whose design matches local network 

conditions. Bundle Protocol identifiers for routing, the 

Endpoint Identifiers (EIDs), are somehow mapped to local 

routing addresses in the local subnetwork via late binding. 

The Bundle Protocol itself only supports internetworking 

indirectly, by permitting multiple different convergence 

layers to be used, or multiple diverse naming schemes for 

EIDs to be used. Controlling the mappings, propagation of 

routing information, and discovery of node and application 

identifiers, is left as orthogonal to the Bundle Protocol, and 

may be accomplished by entirely incompatible methods in 

different networks. This implies that there will not be a 

single universal DTN like the shared and widely-understood 

Internet, but rather many independent and incompatible 

DTNs. This implication should be carefully considered 

against the goals of network-centric communications 

infrastructure. An internetwork DTN architecture based on 

the Bundle Protocol may be undesirably similar to the 

beads-on-a-string model [5] with translation gateways 

between neighbouring networks, should the local 

enhancements to the Bundle Protocol become too divergent 

to permit high-level interoperability between user 

applications. 

This indirection in implementing specific features separate 

from the Bundle Protocol itself does not prevent the Bundle 

Protocol’s performance from being affected by local 

networking conditions. Our experiments with the Bundle 

Protocol in operational environments with deployed DTN 

networks have clearly demonstrated that the Bundle 
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Protocol is affected by real-world concerns and physical 

effects, such as error-detection, reliability and timing. These 

physical effects act on the logical Bundle Protocol format 

even through the local network and the local convergence 

layer. 

2. OUR USE OF THE BUNDLE PROTOCOL 

Authors of this paper participated in the team that is the first 

to use the Bundle Protocol from space. The Bundle Protocol 

was tested by transferring image data from the UK-DMC 

remote-sensing satellite [6][7]. We implemented bundling 

over the Saratoga UDP-based transfer protocol developed 

at Surrey Satellite Technology Ltd (SSTL). Saratoga is 

designed for scheduled private links where high utilization 

is required by a single flow, and where loss recovery 

presumes that congestion is not present. 

These private links are the wireless links from a remote-

sensing satellite in low Earth orbit to a ground station, 

downloading image data during a pass [8]. Saratoga was 

designed to work as a standalone protocol, and was later 

also adopted to carry bundles as a convergence layer for 

Bundle Protocol use [9]. Proactive fragmentation of files 

delivered in bundle fragments across multiple passes over a 

ground station was demonstrated. This fragmentation is not 

found to be currently of benefit to SSTL's operational 

imaging scenario, because planned satellite contacts are 

rarely interrupted, image files are sized to be transferable in 

a single pass, and images are not stored on the satellite for 

long periods if not downloaded, but can be replaced in situ 

by newer images. However, the support for fragmentation 

may have utility in future systems where more than one 

ground station is used to upload or download large volumes 

of data, where data, e.g. large code executables, are 

uploaded to the satellite across multiple passes, or where 

more automated distribution and processing of data is 

desired. 

We also used the Bundle Protocol over TCP as a 

convergence layer, for carrying downloaded remote sensing 

data across the shared terrestrial Internet. This was 

implemented with existing DTN2 dtnd bundle agent 

software [10][11]. The DTN bundles for these experiments 

were carried by and fully utilized existing IP networking 

throughout. 

In working with the Bundle Protocol and multiple 

convergence layers in both concept and practice, we have 

become familiar with its development and design choices – 

and with its current architectural weaknesses and areas 

needing work. As it may be possible to remedy many of 

those weaknesses, we discuss them at length in this paper. 

As popular media coverage has somewhat sensationalized 

the benefits and features of the Bundle Protocol beyond 

those present in its current incarnation, these weaknesses 

deserve to be more widely known, so that any potential user 

of the Bundle Protocol is aware of what benefits the Bundle 

Protocol does currently bring to a user’s application – and 

what it doesn’t yet bring. 

3. BASIC BUNDLE PROTOCOL ARCHITECTURE 

From an architectural standpoint, bundling differs from 

traditional Internet paradigms, even at the highest level of 

addressing and the definition of endpoints. In the Internet’s 

layered model, applications and transport protocols run end-

to-end, with the Internet Protocol (IP) mediating link 

vagaries at each hop between source and destination. 

Internet applications send data in different ways (e.g. 

bytestreams versus datagrams) and that data is broken into 

relatively small IP packets with well-defined minimal and 

maximal sizes by the transport and packetization sub-layers. 

In the DTN bundling architecture, end applications 

“register” with bundle agents. The applications then pass 

data to the bundle agents, which then create bundles and 

perform the end-to-end transmission functions behalf of the 

applications. However, in contrast to the packetization of IP 

data by transport layers using IP, the “bundleization” rules 

for DTN data are not yet well-understood. 

Internet applications typically select transport protocol 

configurations that fit their needs for reliability, and based 

on that configuration which they control, can clearly 

understand what levels of retransmission and error-detection 

are in-effect for their transmissions. Reliability of bundle 

transmissions is intended to be provided through the 

optional “custody transfer” mechanism in the bundle 

protocol. The custody transfer is essentially a bundle agent 

acknowledgement that a particular bundle has been received 

by some later bundle agent – the custodian – which has 

taken on the responsibility for getting the bundle to its final 

destination. This is what allows the bundle protocol to 

provide some in-network retransmission service to avoid the 

expense or even impossibility of end-to-end retransmission. 

However, as currently defined, the applications still have to 

provide many reliability mechanisms of their own to detect 

or prevent corruption of data, misdelivery of data, 

replication of data, etc. 

While the definition of Bundle Protocol reliability was 

apparently discussed at an early phase [4], we could not find 

published records of those discussions. How reliability and 

error detection is handled is not explained in the 

architecture or bundle protocol definition RFCs, and the 

details and implications of this have not been known or 

well-understood until recently. We discuss reliability at 

greater length later in this paper. 

IP networks have well-understood means for locating 

services and resolving host and service identifiers into 

locators, as well as updating the bindings in the mapping 
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systems – the Domain Name System (DNS), Session 

Initiation Protocol (SIP) servers, and others. The Bundle 

Protocol currently relies on late-binding of all identifiers 

and does not yet distinguish between host and service 

identifiers. This use of late binding is what enables a DTN 

to function in the absence of well-connected infrastructure 

that possesses the low latency of communications required 

to perform global lookups and multiple recursive exchanges 

in sequence – a necessity for DNS. However, the 

localization of the mappings raises the issue of how to 

securely update them. There are not yet means for bundle 

agents to police registrations, and secure registration and 

efficient registration state management may itself require 

additional protocol machines that are not yet defined. There 

are interesting cases possible, such as a bundle agent 

accepting custody of a bundle for an application who it 

thought was registered, even though that application 

endpoint has moved on to another bundle agent. Handling 

errors due to stale local state and gracefully recovering 

becomes necessary due to the inability to coordinate global 

state. More work is required to prevent or at least mitigate 

this. 

IP network engineers are familiar with the creed “IP over 

anything”, referring to the ability of IP to work over and 

bridge across many types of underlying subnetworks. For 

example, specifications exist for IP over many types of 

wired and wireless links, and demonstrations have even 

been done of IP over challenging transmission media with 

large delays, such as carrier pigeons, as a lark.  

The Bundle Protocol is similarly intended to work over any 

type of subnetwork, and accomplishes this through 

“convergence layer adapters” tailored for each subnetwork. 

Convergence layer adapters play a significant role in the 

reliability of the bundle protocol, as discussed later. 

Specifications of IP over different link types and DTN 

convergence layers differ in their scope, as IP specifications 

define how to configure addresses, discover routers, 

maintain neighbor reachability information, and other basic 

operations that are not included in the definition of scope of 

a DTN convergence layer adapter. 

4. PROBLEMS AND ISSUES WITH BUNDLING 

4.1 Reliability, error detection, checksums and performance 

The current base Bundle Protocol specification does not 

attempt to detect errored bundles, in that it has no checksum 

support for error detection and rejection of corrupted 

bundles – either to detect corrupted header information 

(metadata) that the Bundle Protocol uses for its own needs, 

or to detect corruption in payloads that it carries. It cannot 

be determined if the bundle information received by a 

bundle destination is error-free or not.  
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Figure 2 – comparison of control loops 

Error detection is a very basic networking concept that was 

apparently purposefully left out of the Bundle Protocol 

design, for both its header (metadata) and payload data. 

Without useful error detection, the Bundle Protocol’s 

custody transfer mechanism cannot guarantee that a 

custodian bundle agent taking responsibility for final 

delivery of a bundle has actually received an uncorrupted 

copy of that bundle to send on. We demonstrate that this is a 

severe performance and resource usage issue in DTNs for 

applications relying on reliably-transmitted and uncorrupted 

payload data. This also becomes an issue when bundle 

headers, or metadata, are unexpectedly corrupted in transit, 

leading to misdelivery, misinterpretation of data fields, or 

other mishandling. 

The rationale for the omission of error detection has been 

described as based on the fact that not all applications 

require error-detection or data integrity, and that 

applications can provide these features themselves. That 

rationale ignores the need for any protocol to guard and 

verify the reliability of and test its own header information, 

which the sending application using the protocol does not 

know about – in this case, the Bundle Protocol's own 

metadata. The Bundle Protocol’s own headers and metadata 

should be verified by using checksums covering each 

block’s header in order to achieve this verification and 

protection against corruption. 

Leaving error recovery up to the applications is only 

possible when the applications are tightly coupled across the 

network, with a tight control loop for resends of errored 

data. DTN networks, by their ad-hoc nature, are loosely 

coupled, and there may not be any direct communication or 

control loop between applications at end nodes, requiring 

increased assistance from the network to improve 

performance. This is shown conceptually in figure 2. 

The well-known end-to-end principle [13] has been used to 

justify both leaving everything to the applications, and the 
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alternative of involving the network in recovery and 

resends, as the principle both implies that each application 

must always provide its own sanity-checking fit for purpose 

as the ultimate fallback, and at the same time that if 

significant performance gains are obtainable, then the lower 

layers should also implement a version of these features to 

improve overall performance across the network. To quote 

[13]: "Clearly, some effort at the lower levels to improve 

network reliability can have a significant effect on 

application performance." 

Optional security extensions to the Bundle Protocol [14] 

have been proposed as a way to enable error detection. It is 

true that some error detection can be accomplished through 

security protocols that provide keyed checksums across 

their payloads, as possible in the Bundle Security Protocol. 

Using the Bundle Security Protocol to implement error-

detection has some drawbacks, in that different responses 

are likely required between legitimate errors and attacks, 

and checking the reliability of secured payloads is not 

possible at intermediate agents that have the necessary keys 

withheld from them. 

The mutable canonicalization rules of the Bundle Protocol 

mean that coverage of metadata and the primary and 

payload blocks can vary considerably depending on the 

rules used. Using a ciphersuite that requires a private key to 

decode or check header fields that are included via 

canonicalization means that protection of those headers 

against corruption is is only available where that key is 

available. 

We have proposed a workaround to add reliability into the 

existing protocol infrastructure. This approach uses the 

bundle security specification and ‘wraps’ the bundle 

payloads and non-mutable header data in the primary 

bundle block using an insecure “null-keyed” reliability-only 

ciphersuite using a well-known key, rather than an actual 

security ciphersuite that only provides a reliability check as 

a side-effect of security [15]. The null-keyed ciphersuites 

provide integrity protection against non-hostile causes of 

errors, such as bugs in reassembling fragments or accessing 

memory, corruption of memory due to radiation events, etc, 

rather than providing security services such as non-

repudiation or sender authentication. 

Like the Bundle Protocol, the Licklider Transfer Protocol 

(LTP) [16], a bundle convergence layer developed to carry 

bundling over private Consultative Committee for Space 

Data Systems (CCSDS) space links, did not include 

inherent error detection, but did define optional security 

extensions. The idea of using a shared well-known key to 

repurpose security for a reliability function originated here 

[17]. This makes implementing the optional security suite 

mandatory for reliability purposes. LTP is able to use this 

successfully because its purpose is to provide point-to-point 

communication without other nodes in the middle. We show 

that reuse of LTP’s approach to reliability for the bundle 

protocol is weak, because checking the reliability of bundles 

at bundle agents in the middle of the network, between 

source and destination, is needed to increase performance 

across challenging networks. This also ignores the 

possibility of errors in storage, processing or reassembly 

internal to a bundle agent and host. 

These reliability and performance problems are illustrated in 

figure 3, where two bundles travel across a DTN network 

with intermittent link connectivity indicated by the dashed 

lines. The dark bundle contains a Payload Integrity Block 

(PIB), signed with a security ciphersuite of key known only 

to the source and destination. The light bundle has a PIB 

using an insecure null-keyed reliability-only ciphersuite, 

that always uses the well-known key contained within its 

specification, and which can be checked by any node 

knowing that well-known shared key. 

It does not matter whether the dark bundle is confidential 

with a Payload Confidentiality Block (PCB) or merely a 

PIB authenticated only at endnodes; what matters is how 

widely its key is known. 

In steps a. and b., custody transfer takes place. The bundle 

agent at the second node takes ownership of the bundles, 

but can only check the light reliability-only bundle for 

receipt without errors. Without knowing the key for the 

other dark bundle’s security association, the reliability of 

the payload cannot be checked. 

The custody transfer acknowledgement sent back to the 

source as an administrative record takes it on faith that no 

errors were introduced, and that the bundle was delivered 

entirely successfully by the convergence layer and any hop-

by-hop security, if implemented. That custody agent then 

transfers the bundles onwards to the next node and bundle 

agent in c. In our example, that node is hit with memory 

corruption during long-term storage of the bundles in d. 

The agent on that node is unable to check the integrity of 

the encrypted payload in the dark secure bundle, and so 

forwards it not knowing of its corruption. However, the 

agent has the ability to check the payload of the light 

reliability-only bundle before sending it on, and so can use 

the reliability check to detect errors, before sending that 

reliability-only bundle onwards. This error detection can be 

used to cause a request to be sent to the custody transfer 

node for an uncorrupted copy of the reliable bundle. 

The corrupted but security-protected dark encrypted bundle 

travels onwards in steps e. and f., and is only discarded once 

it reaches the destination application, which decrypts the 

bundle payload and attempts to use it. At that point, the 

application at the endpoint must detect the corruption, 

which is indistinguishable from an attack, and then re-

request the encrypted bundle from the distant custody 

transfer node in g. 
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Figure 3 – performance problems with bundling 

Meanwhile, the light insecure reliable bundle has already 

been resent, and a useful copy of that insecure bundle 

arrives at the destination, before a resent dark secure 

bundle, in h. 

This is an example of the parts of the network helping 

performance of traffic, in accordance with the end-to-end 

principle, by using separate tighter control loops than 

application-to-application end-to-end. The applications’ 

control loop is open when there is no direct connectivity 

between source and destination in an ad-hoc delay-tolerant 

network. We use the example of memory corruption 

because it is something that ‘reliable’ convergence layers or 

hop-by-hop security protocols cannot address, as it happens 

outside the links and subnets that they cover. This can 

happen in memory and storage subsystems internal to a 

host, and studies have indicated that it is not uncommon 

[18][19]. (However, it should be noted that requesting 

retransmission of a bundle may be unacceptable from a 

security standpoint, as it would be possible for an attacker 

to create an amplification and redirection attack by sending 

spoofed bundles, causing retransmissions that consume 

network resources. That would be addressed by an 

authentication framework. We discuss this later in the 

section on security.) 

Performance for encrypted payloads can be improved in this 

scenario by having secured bundles ‘wrapped’ within an 

outer reliability checksum block that is applied to the 

bundle after payload blocks are encrypted. This gives the 

best of both worlds, providing the benefits of an end-to-end 

reliability check, error detection throughout the bundle’s 

travels that makes custody transfer meaningful, and the 

performance boost that comes from tighter control loops for 

resends within the network that do not involve the 

application endpoints, while at the same time implementing 

security by also using the Bundle Protocol’s security 

mechanism. For secured payloads, it would be necessary to 

nest a secured payload within an outer reliability check, 

much as an IPSec packet can nestle in an Ethernet frame 

with a strong Cyclic Redundancy Check (CRC) across the 

entire packet and frame, so that third-party nodes lacking 

keys to content can check that they have reliably received 

and are reliably relaying unknown content. The security 

mechanisms are completely applied before the reliability 

check is computed, so that there is no security risk – just as 

there is no security risk from computing an Ethernet CRC 

for a frame containing an IPSec packet. Figure 4 shows how 

existing ciphersuites can be reused to achieve this. 

This concept of nesting or 'wrapping' already exists in the 

Bundle Protocol, for security gateways. Here, we are 

suggesting that every node is also its own 'reliability 

gateway, and that whenever a security block with private 

keys is applied, a reliability block using shared keys should 

be applied afterwards, covering the security block, so that 

the robustness of the bundle can be checked in transit in the 

network. Alternatively, another approach to gain the 
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performance of reliability with end-to-end security is for 

applications to implement their own end-to-end-security, 

tunnelling their own encrypted application payloads through 

the Bundle Protocol, using the Bundle Protocol’s security 

mechanisms only for reliability, and not nesting security 

blocks. Not relying on the security mechanisms offered by 

the Bundle Protocol can increase overall performance in this 

case. 

A reliability block using an insecure cipher, but with a zero-

length payload, will still cover and protect several non-

mutable header fields in the primary payload block. This is 

a complex way of implementing a header-only checksum. 

In [4] it is claimed that reliability is best left up to the 

application. In an ad-hoc network, there is unlikely to be a 

direct end-to-end connection between applications, leading 

to an open loop rather than the closed loop expected in 

terrestrial networks, and poor resulting performance, as 

shown in Figure 2. [4] does not distinguish between the 

need to always protect headers (metadata) and optionally 

protect payloads if the payloads cannot tolerate errors. It 

would be useful if custody transfer provided that facility, 

confirming that metadata was received correctly, and 

optionally that bundle payloads were received correctly, 

too, if protection against payload errors is required. We 

expect that protection against payload errors is desirable and 

will be more common than the alternative. Protection 

against errors in metadata is clearly very desirable, given 

the expense of mishandling, and the need to use the DTN’s 

limited connectivity efficiently. 

If leaving reliability up to the application is reasonable to do 

for DTNs, as [4] claims, without assistance from the 

network to increase performance, then by that same logic 

security is best left solely to the end-to-end applications as 

well, and should not be contributed to by the network. And, 

for the existing Bundle Security Protocol and our reliability 

work leveraging that, applications implementing their own 

security and only using reliability ciphers in the bundle 

network can get increased performance from the bundle 

network, as we have outlined in our scenario. 

[4] makes an analogy with IP removing the header 

checksum when going to IPv6, leaving error-detection to 

higher layers checking the IP pseudo-header checksum. 

That is presented as a justification for leaving error 

checking out of the Bundle Protocol, but can easily be 

argued against. First, IP in a terrestrial network exists on an 

end-to-end path where there is a tight control loop, as 

shown in figure 2. If an IP packet is received errored at the 

destination, the request and resend can happen quickly 

thanks to that tight, closed, end-to-end control loop. 

The IPv4 header checksum was removed from the IPv6 

design to prevent repeated computation of the checksum 

due to changing fields such as the time-to-live (TTL) count.  
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Figure 4 – Comparison of approaches to reliability 

giving different performance from the network 
 

It would have been possible for an IPv6 header checksum to 

be designed to only cover ‘non-mutable’ fields. It is 

possible for routers to check the pseudo-header checksum to 

verify the reliability of each IP packet, but this is not done 

in practice due to the following reasons: 

• emphasis on processing speed, 

• the carriage of unfragmented IPv6 packets in outer 

framing such as Ethernet, with strong cyclic 

redundancy checks (CRCs), 

• the lack of explicit fragmentation of IP meaning 

that reassembly errors are normally not a concern 

for higher layers, and  

• awareness of the tight control loops that make 

resends easy once the pseudo-header is checked 

and found wanting at the endpoints. 

DTN networks do not have the tight end-to-end control 

loops of terrestrial IP networks. In a DTN there may be no 

direct connectivity between endpoint applications at all.  

DTN networks are expected to have significant amounts of 

fragmentation of bundles, both at the sending nodes (called 

proactive fragmentation) and within the network (called 

reactive fragmentation). There is a need to check 
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reassembly of fragmented bundles. By contrast, 

fragmentation of IPv6 packets is only possible at the 

sending endpoint, and en-route IPv6 packets can not be 

fragmented once in the network. 

Sending data in many DTN networks can be expected to be 

more expensive in terms of slow rates, power use, etc., 

leading, as our example has shown, to a distinct 

performance advantage to nodes able to use a reliability 

check on each bundle. Network architectures with different 

designs for different conditions have a different set of 

tradeoffs. Appealing to a design for a terrestrial IP network 

to justify design choices for a different network, where 

control loops and tradeoffs are entirely different, is not 

justifiable. 

In our experiments with an operational DTN satellite sensor 

network, we have implemented an optional MD5 checksum 

for the Saratoga protocol to provide a measure of reliability 

checking. This can be used to compare hash values of files 

before and after downloading. This provides protection in 

the convergence layer over the most error-prone hop 

between bundle agents, but not end-to-end between the 

application source and sink. On the relatively low-end 

processors typical of spacecraft or embedded devices, that 

MD5 computation can take several minutes to run over a 

large file, so it is likely to be used sparingly onboard. Given 

that image data is often downloaded in ‘one shot’ before 

being deleted to make room for new images, and 

postprocessed heavily with human inspection, the need to 

resend image files with slight corruption is minor, although 

knowing where that corruption may lie in the image data 

would be useful. However, overall reliability checking 

becomes very important when e.g. uploading code to be 

executed. 

4.2 Time synchronization problems 

The Bundle Protocol assumes that all communicating 

bundle nodes share a common, simultaneous, synchronised, 

conception of UTC time so that its timestamps can be 

interpreted and handled correctly. There are three primary 

goals for timestamps in the Bundle Protocol. These goals 

relate to network and agent resource protection and 

efficiency: 

• the Lifetime keeps bundles from looping continuously 

throughout the network due to routing loops, similar to 

IP’s Time-To-Live (TTL) counter; 

• the Lifetime spare the network from storing and 

propagating bundles after a time that the sending 

application has designated the data as no longer useful. 

• The Creation timestamp information can uniquely 

identify the bundle, necessary for assembly of bundle 

fragments. This is a similar role to the Identification 

field in the IPv4 header. 

During our initial testing in terrestrial networks, it became 

clear that network time synchronization is critical. That is 

probably not a reasonable requirement for many DTN 

networks, as nodes in many DTN networks will be isolated 

and disconnected for long periods of time. 

Furthermore, the Bundle Protocol is a network overlay, and 

one that may be running on top of ad-hoc networks in 

highly stressed environments, effectively at the application 

layer as far as the ad-hoc network is concerned, The 

requirement that all DTN networks running the Bundle 

Protocol must be synchronized to enable interoperation is 

not necessarily one that is either practical or deployable. 

Our clock synchronization problem with bundling was 

experienced during initial terrestrial use of the Bundle 

Protocol. All of our DTN bundle agents were originally 

configured and tested at NASA GRC in Cleveland, Ohio. 

One bundle agent was sent to Guildford, England. A second 

was sent to Universal Space Networks (USN) in Alaska. 

When performing initial bundle transfers from SSTL to 

GRC to USN across the public Internet, it was noticed that 

the machine clocks had drifted sufficiently enough during 

shipping to result in the bundle creation time stamps being 

out of synchronization. Bundles generated by the “dtnping” 

application used for configuration testing were therefore 

rejected due to lack of tight time synchronization between 

system clocks, leading to unexpected early expiry of the 

bundles. Once the machines were resynchronized with a 

common clock reference, bundle transfers operated 

correctly. 

With scheduled low Earth orbit passes over a ground 

station, it is necessary to know what the time is to support 

the pass opportunity. However, in our initial testing of the 

Cisco router in Low Earth Orbit [20], nodes in the field at 

Vandenberg were still able to operate with clocks set 

several minutes adrift; the loosely-coupled architecture used 

there tolerated this. 

It appears possible to reduce problems related to time 

synchronization, that we discuss in this and following 

sections. This would be done by making small 

modifications to the primary bundle block format and/or 

changing the semantics of the creation timestamp and 

lifetime field to more directly implement their three goals. 

However, proposals to do so have not been fully fleshed out 

or evaluated by the community. 

4.3 Problems in learning the current time 

Expecting DTN nodes with loosely-coupled ad-hoc 

connectivity to be tightly coupled with respect to their 

understanding of clock time has interesting ramifications. 

A side effect of requiring synchronized clocks is that it 

would not be possible for a node to learn the correct time 

using the Bundle Protocol, as its bundles sent asking for the 

time are likely to be judged expired or invalid and be 

discarded. Another protocol would be required to do clock 
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‘housekeeping’. One approach to implementing this other 

protocol would be to have nodes assign clock confidence 

levels to themselves. A node that has rebooted would have a 

clock time of earlier than a starting date of e.g. 1 January 

2008, and a confidence level of zero. Nodes with their own 

internal clocks would have higher confidence levels, 

depending on the accuracy of the clock. Nodes with low 

confidence levels can receive and accept current time from 

authenticated nodes that they trust with higher confidence 

levels. 

Furthermore, for network-centric operations involving 

diverse organizations, it may not be possible from a security 

standpoint to accept time reference data from nodes 

operated by a different organization, even though data 

communications with that organization are deemed 

acceptable. Authentication of the provenance of the time 

information received over some protocol other than the 

Bundle Protocol, and outside of the Bundle Protocol's 

authentication mechanisms, is an interesting problem.  

Time synchronization for interplanetary use was noted as a 

problem by Vint Cerf [21]. Others have noted similar 

problems with synchronization [22]. Problems caused by 

differences in clock times due to Einstein’s relativity are 

unlikely to be noticed in any near-term deployment.  

443 The selected time standard 

The Bundle Protocol uses Coordinated Universal Time 

(UTC), where leap seconds are added at irregular, 

unpredictable, intervals to reflect slowing of the Earth’s 

rotation. For nodes ‘in the field’ for a long time (decades), 

some way of communicating newly-decided UTC leap 

seconds will be required to prevent clock drift over long 

time scales that would eventually lead to bundles expiring 

before delivery. This is most likely to be a significant issue 

for real-time traffic with very short bundle lifetimes. 

4.5 The roles of convergence layer adapters 

Direct TCP and UDP convergence layers are in already in 

experimental use for carrying bundles across the terrestrial 

Internet, though these convergence layers are not yet agreed 

on by implementers and are still in the process of being 

documented [23][24]. Different UDP implementations are 

currently only compatible when sending bundles that fit 

within single UDP datagrams without convergence-layer 

fragmentation. 

The simple UDP convergence layer implemented in existing 

DTN software, including DTN2 dtnd, is unreliable, 

providing a bundle agent with performance that differs 

considerably from a convergence layer supporting 

reliability, such as TCP, Saratoga or LTP. The community 

has yet to determine whether, and how, the UDP 

convergence layer should comply with recommendations 

for UDP-based protocols [25]. 

The more well-defined convergence layers have differing 

intended operating environments and underlying stack 

dependencies. Saratoga relies on UDP, while LTP is 

intended to be used over CCSDS protocols. LTP is 

supported over UDP as well for testing; LTP would not 

support a pseudo-header check, discouraging carrying LTP 

directly over IP. UDP and IP can also be carried by CCSDS 

protocols in a variety of ways, but have not traditionally 

been used by most CCSDS-based space missions. Other 

ways of building upon UDP are also possible, e.g. the Uni-

DTN convergence layer for unidirectional links, which 

relies on the FLUTE erasure coding UDP multicast protocol 

[25]. 

To complicate matters, convergence layer adapters have 

been proposed and written that run directly over data links, 

e.g. Ethernet or Bluetooth, as well as over file-based 

portable storage media like USB “thumb-drives”. 

These convergence layers obviously have widely varying 

expectations and properties that the bundle agents can 

depend or rely on, leading to differing behaviour at the 

Bundle Protocol level. (The potential for use with long-term 

storage media, rather than with store-and-forward network 

protocols, was one motivation for including timestamps 

using a universal clock within the bundle protocol.) 

The possibilities for carrying the Bundle Protocol over a 

variety of convergence layer adapters are shown in figure 5. 

A further challenge and complication to the scoping of a 

convergence layer adapter’s role is that some convergence 

layer adapters contain their own store-and-forward 

capabilities in addition to those of the bundle agent. 

Saratoga is one example, with file storage actions. LTP is 

another such example. An LTP-T variant has even been 

proposed as a way to add source-routing capabilities to LTP 

which can blur the need for a bundle agent in some 

deployment scenarios [27]. 
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This is similar to the concept of “extended operations” in 

the CCSDS File Delivery Protocol (CFDP) [28], which 

itself bears several similarities to the capabilities touted for 

a bundle agent in providing reliable store-and-forward 

services. A space probe using CFDP would not need 

bundling, and vice versa – unless there is a desire to use one 

or the other’s programming interfaces or interoperate with 

other systems based on either CFDP or bundling. 

It is interesting that, although bundling is intended to work 

over a wide range of networks and protocols via 

convergence layers, most of the use and development of the 

Bundle Protocol has been over IP. IP provides a shared 

working base that is popular, widely implemented, and 

well-understood. Furthermore, since “IP over everything” is 

already well-accepted and numerous research and 

development projects are continuously extending the 

breadth of IP networks, it makes for IP-based convergence 

layer adapters to be specified and documented and for 

bundle agents to bootstrap configuration parameters from 

the IP-based convergence layer protocols whenever 

feasible.  

Using IP-based convergence layers, rather than attempting 

to map the bundle protocol directly onto link protocols, 

makes sense architecturally, because it limits the number of 

bundle protocol specifications for mapping that have to be 

created and documented. The engineering and development 

costs are contained. Since IP-to-datalink mappings are 

either already written, or are typically concurrently written 

with the development of new datalink technologies, the 

availability of standard IP-based DTN convergence layer 

adapters leads to “DTN over everything” by proxy, with 

very little additional systems integration or expense 

required. Literally hundreds of documents could be written 

over the years for carrying the Bundle Protocol over a 

variety of different data links with different convergence 

layer adapters. This is avoided entirely if IP-based 

convergence layers, capable of working in a broad set of 

environments, can be adopted. 

Configuration information, e.g. TCP port numbers, IP 

addresses, etc., is needed for bundle agents to work with 

convergence layer adapters, along with an indication of 

what bundle agents can be reached through the convergence 

layer adapters. This information would be provided and 

exchanged as part of a routing protocol, but is currently 

entered manually in experiments with DTN software. 

Methods for bundle agents to autoconfigure and 

autodiscover each other in IP networks have not been 

pursued by the DTNRG, though some groups have 

experimented with different techniques. It is not clear that 

aiding in configuration belongs within the role of the 

convergence layer adapters or not. 

4.6 Maximum transmission sizes and fragmentation 

There is currently no method for advertising or negotiating 

the maximum size of a bundle that can be accepted by a 

bundle agent for storage and delivery, so that bundles that 

are too large can be rejected. This can also lead to 

fragmentation of bundles in the network. Handling reactive 

fragmentation, with delivery and reassembly of bundles 

split in the network, whose fragments take different routes 

to the destination, is an open problem with reliability 

implications.  

The interactions and effects of fragmentation on other parts 

of the DTN architecture are not yet well explored. For 

instance, reactive fragmentation is known to cause 

complications with the proposed bundle security protocol 

[14] and with custody transfer. A solution for allowing the 

security mechanisms to function in conjunction with 

reactive fragmentation has not yet been selected, though 

there are proposals for either sending signatures covering 

fragments at a later time, or for proactively including 

multiple authentication codes across pieces of the bundle 

(called the "toilet paper" scheme [29]). These have 

advantages and disadvantages that must be weighed. 

Custody transfer of fragments has been discussed [10], but 

is not part of the Bundle Protocol specification. 

We believe that useful bundles will be large, and have 

experimented with sending bundles of sensor data of over 

one hundred megabytes in size from space. We expect large 

fragments to be common and useful. Schemes to implement 

reactive fragmentation should be carefully considered. 

4.7 Agreement on naming schemes 

Different Bundle Protocol implementations are currently 

supporting multiple different naming schemes for Bundle 

Protocol Endpoint Identifiers (EIDs), with different rules 

for forming and interpreting EIDs. This is not necessarily a 

bad thing, as different operational environments may have 

different requirements for naming and addressing, and it 

avoids the difficulty of trying to create a one-size-fits-all 

scheme. However, it does lead to some interesting open 

research questions. 

The built-in naming flexibility gained by using a generic 

Uniform Resource Identifier (URI) format for Bundle 

Protocol EIDs remains to be put to its full use. The URI 

scheme is intended to indicate how the remainder of the 

EID string should be parsed. However, the DTNRG has not 

yet rigorously specified or adopted any common EID 

schemes, and additionally, rules for what to do with 

unrecognized EID schemes have not been defined. 

A basic scheme that facilitates initial testing and 

implementation would be helpful, and would provide a 

common base for which multiple implementations could be 

expected to interoperate regardless of their support for other 

EID schemes. As routing to destinations is meant to be 

based on EIDs, a common EID format becomes a 

prerequisite for routing between different DTN networks. 
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Since the EID is the sole basis to identify the upper-layer 

protocol machines above the bundle protocol, a common 

property of all EID schemes seems to be the need to mux 

and demux traffic between different protocol machines 

registered to the same bundle agent. This would be 

accomplished via a mechanism similar to the next-protocol 

field in IP packets, or the port numbers and service codes in 

Internet transport protocols. If common EID schemes can 

not be defined for some reason, then at least defining a 

standard way to include mux/demux tokens within an EID 

would be useful. 

An EID specifies a group of bundle agents, rather than a 

single agent. How bundles are delivered successfully to this 

group, so that the equivalent of multicast can be carried out 

and applications can rely on sending to group EIDs, is an 

open question.  

4.8 Standardization of routing methods 

The need for common routing protocols and address 

resolution techniques is related to the issue of common EID 

schemes for naming of destinations. An EID is essentially 

an identifier with the late-binding operation that determines 

the route a bundle takes. Resolving a destination EID into 

one of a local registration, a next hop bundle agent, a 

convergence layer adapter, or even a particular convergence 

layer adapter address are all possible paths within a bundle 

agent’s processing. As no resolution protocols comparable 

to DNS, ARP, or SIP, and no routing protocols with 

features similar to RIP, OSPF, or BGP have yet been 

defined, there is much fruitful work to be done in this area 

of the DTN bundling architecture. A large challenge would 

be in defining mechanisms that are independent of a 

particular convergence layer adapter or operational 

environment. If this is not possible, then it makes “DTN 

over everything” more difficult, as routines for such 

operations have to be created per-deployment. 

Forwarding without any automated routing or resolution 

protocol is possible through several means: 

• if static routes are configured at each node, which is 

the antithesis of the ad-hoc DTN networks that 

bundling is intended for. 

• if source routing is used, perhaps as a new bundle 

option. 

• if the EID scheme itself implies forwarding rules 

somehow through clear use of hierarchy, which can be 

thought of as a form of source routing. 

Automated routing protocols increase scalability, reduce 

operations and management overhead, and enable 

operations in completely ad-hoc settings. 

It seems likely to us that a number of subnet-specific 

routing protocols will be needed in order to enable the 

Bundle Protocol to perform well across the highly diverse 

range of environments that it is envisioned for. (The Bundle 

Protocol is already relying upon IP routing protocols to run 

across the terrestrial Internet.) This again represents the 

utility in clearly specifying and documenting IP-based 

convergence layer protocols, because it means that existing 

IP routing and resolution mechanisms can be employed 

without re-inventing the wheel and re-learning painful 

lessons in routing for DTN. 

Interconnecting different DTN networks poses problems 

with gateways and sharing of routing information, possibly 

leading to the separate internal and external routing models 

used by the Internet – which is vastly complicated by the 

late binding to addresses of EIDs. With late binding, 

mapping EIDs to individual subnetworks can be 

problematic and even dangerous depending on the 

properties of interconnection between subnetworks and the 

mobility of EID owners between subnetworks. 

The concept of using “regions” as one component of an EID 

was proposed as a way to distinguish particular 

subnetworks in an EID. However, this is very problematic 

in the general sense because it leads to difficulties in 

multihoming by naming an interface (or set of interfaces) 

rather than a host (or application process, or set of 

application processes), as was known already during the 

early Internet build-up [5]. There has been question of 

whether a region relates to either a common field of control, 

a high probability of interconnection, or a spatial area. In 

some discussions, the notion of regions has been attempted 

to be supplemented by the notion of “domains”, but there is 

still a lack of clarity in what these terms imply and do not 

imply, and not yet agreement on how to handle inter-

domain, inter-region, inter-EID-scheme, or other types of 

routing decisions. 

Agreement on a very basic routing protocol that simply aids 

in testing and debugging but is not expected or required to 

perform optimally (similar to RIP for IP), would be useful 

in these early phases of DTN test and development. 

Methods for auto-discovery of bundle agents have been 

proposed and tested, but not yet fully adopted in the 

DTNRG. Building on auto-discovery, methods of 

distributing advertisements of routes and predicted contacts 

would greatly increase the capabilities of the Bundle 

Protocol and bring it closer to the state needed for 

operational benefit. 

4.9 Network management 

DTN nodes currently have no support for remote 

management, which is common in IP networks. 

For an operational DTN, it would be very useful to have 

some type of network management capability, similar to the 

features of the Simple Network Management Protocol 

(SNMP) in IP networks. This capability could be used to 

report on node health, storage issues, undeliverable bundles, 



 

 12

performance data, and so on. It could be used to remotely 

(re-)configure a bundle agent through sending network 

management bundles to conditionally fetch and set 

configuration parameters. 

A powerful network management protocol might even be 

able to share functionalities with a DTN routing protocol, as 

it could be used to add/remove and enable/disable routes on 

the bundle agents under control. 

However, the long delays and link disruptions that increase 

or break end-to-end control loops in DTN networks also 

make network management more difficult. It is likely that 

network management would be subnet-specific, using a 

subnet-specific protocol, e.g. SNMP over IP, rather than the 

Bundle Protocol itself. Management of the overlay running 

the Bundle Protocol is distinct from management of the 

underlying network. Combining these into a single system 

has a number of technical and other tradeoffs. 

Little work has yet been done on DTN network 

management, though it seems to be essential in some 

proposed scenarios where DTN bundle agents are to be 

operated as long-term infrastructure elements. Our 

experiences with problems in time synchronization suggest 

that DTN network management based on the Bundle 

Protocol will be somewhat complicated, as bad 

configurations may be impossible to fix without using 

bundles with very long lifetimes and/or spoofed creation 

timestamps – which would be undesirable in the network. 

4.10 Quality of Service 

IP network infrastructure supports an array of Quality of 

Service (QoS) mechanisms and mappings between different 

subnetwork QoS mechanisms and IP QoS mechanisms. The 

bundle protocol has defined some bits to indicate one of 

three priority levels in a bundle, but the semantics of these 

levels are as yet undefined, so they cannot be effectively 

used unless the handling behaviour is locally agreed on and 

supported by all bundle agents. 

Mechanisms for identifying, labeling, policing, and 

otherwise providing QoS for bundle flows are not yet part 

of the DTN architecture. The aspects of DTN QoS differ 

from IP QoS as DTN makes heavier use of in-network 

storage and has more complex routing decisions. The 

interactions between late binding and QoS reservations may 

also be complex. 

One simple proposal is to consider a bundle flow to consist 

of all bundles between the same two EIDs, and then use the 

bundle priority field in per-flow priority queuing. This 

would guarantee certain forwarding behaviours within 

applications’ data flows, but still leaves the more difficult 

problem of scheduling contention between flows as a matter 

of local policy. 

4.11 Efficiency of protocol overhead 

The Bundle Protocol can be efficient in terms of metadata 

overhead if bundles can be made large, but this is not 

natural for all applications. 

Our experiments from orbit transferred a 150MB image file 

as a fragmented payload. There, the added overheads of the 

bundle format were trivial, and were outweighed by the 

overheads of Saratoga/UDP/IP packet headers in the 

convergence layer. 

However, some convergence layers, e.g. raw UDP 

implementations, cannot handle large bundles, expecting a 

bundle to fit into a UDP packet, and be less than 64KB in 

size. 

Recent discussions have questioned the suitability of DTN 

for “small payload” transmissions such as real-time voice 

codecs. This still appears to be an open issue. 

4.12 Complexity and performance 

The complexity of the Bundle Protocol’s design is shown 

by its variety of optional fields, structures, and novel binary 

formats [30]. 

The use of variable-length, rather than fixed-length, fields 

with Self-Delimiting Numeric Values (SDNVs) and 

Endpoint Identifiers, and the referencing back to the 

dictionary in the primary block from later payload blocks 

can make the Bundle Protocol more susceptible to parsing 

errors from corruption than a more robust fixed-length 

format. In a fixed-field format, an error in a field may 

affects only that field. In variable-length SDNVs, a single 

bit of each byte indicates whether the SDNV continues for 

another byte. An error introduced into any of these bits of 

an SDNV not covered by a canonicalization will affect 

interpretation of that and everything that follows. 

This complexity, including concepts such as the mutable 

canonicalization rules used by security (and thus inherited 

by reliability), can be considered as a hurdle for 

implementation, interoperability, and adoption – especially 

for those pieces of the design that have not yet been fleshed 

out or agreed. 

It would be difficult to be as ambitious and all-

encompassing as the Bundle Protocol and not be 

complicated. However, much of that complexity lies in the 

security protocols, on which much time and effort has been 

spent. 

4.13 Security 

The bundle security mechanisms are not yet finalized as we 

write, and some aspects of them remain to be completed. As 

these are not yet finished, or fully evaluated in practice, it is 

speculative for writers to make strong claims about the 
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overall security properties of the bundling architecture. An 

overview of those properties is given in [31]. There are 

currently drafts defining methods to protect the integrity of 

bundles between two hops and bundle payloads end-to-end, 

as well as the ability to make a bundle block confidential. 

These all rely on an assumption of shared keying material. 

No method for automatically sharing this material is yet 

defined within the bundle architecture, or proposed in any 

DTNRG draft. Key management has been recognised as an 

open problem [32]. 

The difficulties of applying typical IP security techniques, 

such as established certificate systems, in DTNs are well-

known, with several research issues open and work to be 

done if capabilities similar to those provided by IKE in the 

Internet are to be available in DTNs. 

Another interesting aspect of current Bundle Protocol 

implementations is the lack of any features similar to the 

firewalling or access control lists of typical IP networking 

devices. In operational practice, these are absolutely 

essential in contemporary IP networks, even though they 

often result in frustrations when deploying new services and 

mobile devices. In DTNs with the emphasis on late-binding 

it seems that this may be even more problematic, especially 

since filter rules depend heavily on address formats and 

DTN EID schemes are currently not fully-specified and the 

architecture permits (and even encourages) a proliferation 

of differing formats. There is interesting work to be done in 

this area of how filter implementations can accommodate 

diverse EID schemes. 

The logic for building some means to authenticate bundles 

has been justified as necessary to protect against denial-of-

service attacks against a bundle agent’s resources. This has 

been shown to not be as large a threat in practice as 

originally assumed [33].  

We believe that a larger threat consuming network 

resources exists in inadvertently forwarding errored, 

unchecked, bundles that can only be checked and discarded 

at the destination application. This problem is prevented by 

the reliability checks discussed earlier, and by introducing a 

check across bundle contents before acknowledging a 

custody transfer or on reassembly of fragments or 

retransmission.  

4.14 Content identification 

The Bundle Protocol does not identify the content it carries 

to select an application to hand the content off to. There is 

no notion of something similar to an IP port number or 

protocol ID, or type field, that can be used to pass bundles 

to higher-layer protocols or applications. This can lead to 

each EID scheme also supporting some way of indicating 

applications through the EID, with every application 

appearing as its own bundle node in the EID space – a 

problem reminiscent of creation of all the vanity domain 

names for webservers in the Internet’s DNS. 

It can be argued that the web and email have become 

successful at delivering content partly because it is so easy 

to determine what application should be invoked to receive 

a delivered file, due to their universal adoption of MIME 

[34]. It is reasonable to expect the Bundle Protocol to adopt 

MIME as well.  

5. OTHER APPROACHES TO DTN NETWORKING 

Just as an internet consists of multiple connected networks, 

and the Internet has special meaning implying certain 

protocols used in a certain way, delay-tolerant networking 

environments are larger in scope than the single DTN 

architecture that has been proposed for them by the 

DTNRG. The Bundle Protocol is just one single approach to 

addressing the problems posed by delay-tolerant 

networking. Other approaches to delay-tolerant networking, 

that do not require the Bundle Protocol, are possible.  

We suggest a simple approach, leveraging existing 

standards, using the Hypertext Transfer Protocol (HTTP) as 

a transport-layer-independent ‘session layer’ between each 

two communicating DTN nodes, hop-by-hop, as shown in 

figure 6 [35]. HTTP is well-understood by applications in 

the same way that IP is well-understood, easing adoption. 

New Content-Source: and Content-Destination: headers are 

added, which provide routing information end-to-end. 

Content- headers are treated specially by HTTP: HTTP 

servers must reject transfers with unknown Content- 

headers. Adding these two new headers creates a separate 

DTN network that will not interact with or affect existing 

traditional web use of HTTP. Reuse and implementation of 

HTTP in this way to create HTTP-DTN appears 

straightforward. 

Fitting HTTP to Saratoga for long-delay or private 

networks is possible; HTTP does not contain timers, and 

with persistence, pipelining and unidirectional PUTs, can 

work over long distances. HTTP is already widely used 

over TCP across the shared, congested, Internet, and has 

been proposed for use over SCTP, separating HTTP from 

the underlying transport [37]. 

The two bundle hops used in our operational sensor satellite 

scenario – transport of the bundle over Saratoga from the 

UK-DMC’s SSDR computer to the bundle agent in a 

computer in the ground station, then transport of the bundle 

over TCP across the Internet to NASA Glenn – would be 

replaced by two HTTP-DTN hops: HTTP-DTN transfer of 

the image file over Saratoga between satellite and ground 

station, then an HTTP-DTN transfer over TCP between 

ground station and NASA Glenn’s computer. 
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Content-Source: Content-Destination:

first HTTP transfer second HTTP transfer third HTTP transfer

 

Figure 6 – HTTP-DTN transfers end-to-end 

The Content-Destination: header would be set to indicate 

the domain name of the destination NASA Glenn computer. 

In applying HTTP-DTN to our test scenario, the destination 

is resolved with late binding on the last HTTP-DTN hop, 

which is across a subnet that understands that name using 

DNS. (A static route is used on the wireless first hop for 

traffic from satellite to ground station; everything goes 

down the downlink.) 

HTTP provides the ability to easily transfer content 

identified by MIME. This provides the necessary content 

identification that we have identified as missing from the 

Bundle Protocol. Payload reliability can be addressed by 

using the existing Content-MD5: header. HTTP has a 

number of existing security protocols that could also be 

evaluated for suitability for reuse in unusual DTN 

conditions, on a case-by-case basis. 

HTTP-DTN shares some of the same problems that we have 

articulated for the Bundle Protocol – particularly the 

assumption of synchronized time across nodes that makes 

timestamp and Expires: headers useful, and problems with 

ensuring end-to-end reliability of headers and indicating the 

maximum size of MIME payloads that can be accepted. 

However, by leveraging existing well-implemented 

technologies, HTTP-DTN is far less work to specify, 

understand, and implement than the Bundle Protocol, which 

is a significant benefit. 

We have given HTTP-DTN as an example of an alternative 

to the Bundle Protocol because we are familiar with it and 

details have been worked out. Other alternatives, 

considering concepts implemented by uucp, netnews, 

message-oriented middleware, or Fidonet (where “bundles” 

were proposed [37]), could be fleshed out to be similarly 

viable solutions for delay-tolerant networking scenarios. 

CONCLUSIONS 

Our practical experience gained with implementing and 

operating the Bundle Protocol from space over an IP-based 

sensor network enables us to consider aspects of the Bundle 

Protocol’s design. 

The lack of integrity checksums for reliability checks in the 

Bundle Protocol and the need for network time 

synchronization were found to be real deployment issues 

during our first tests, and we are investigating new 

checksum mechanisms to increase the performance and 

reliability of the Bundle Protocol. 

We have described a bundle of problems with the Bundle 

Protocol as it currently stands. Though it is far easier to 

criticise than to create, and easier to analyse something that 

is being fleshed out in detail than it is to synthesize 

something entirely new, it is hard to avoid recognising some 

problems with the Bundle Protocol and its current design. 

We hope that recounting those problems here will lead to 

them being addressed in later versions of the DTN 

architecture and Bundle Protocol specifications, as research 

into delay-tolerant networking continues and these research 

ideas are matured. Once these are addressed, the Bundle 

Protocol may one day be ready for operational use. 
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