
Programmers Manual For TCP/IP Over ATM Simulator

Introduction
NS Classes

TclObject Class
Special Commands
Matcher Classes
Handler Classes
Event Class
Scheduler Class
Packet Class
Var Classes
NsObject
Link

LossyLink
DropTailLink
REDQueue
CBQueue

Node
RouteLogic
Agent
Trace
Other Classes

ATM Classes
ATMNetwork Class
ATMAal Class
ATMNode Class
ATMCommand Class
ATMLink Class
ATMRouteLogic

ATMMinHop
ATMSwitch

ATMOutputBuffer
ATMSharedBuffer

ATMDiscardAlgorithm
NS Defaults
Procedure ns

Introduction

This document is intended for a those who want to change this simulator or add any new component to
this simulator. It is essential to understand how different functionalities of the simulator are achieved by
various classes. Not only will this ensure a valid addition to the design, but can also ease the
programming effort by using the predefined classes. We believe that the source code is the best guide to
understanding a program but for a simulator of this nature, knowing the basics of the design greatly
enhance the understanding of the program. So we have included both the description of the classes and
parts of their code. If you have not read the "Basic Design Document" then read it first. The following is

a detailed description of the classes. For every class we first brifly describe the class, then its individual
members and important functions.

TclObject (Tcl.h, Tcl.cc)

TclObject is the highest class in the object hierarchy. All the major classes are derived from this class.
The advantage of using this common base class is that objects of all kinds can be stored in the same list .

Variables

id_ A static integer that assigns unique names to all the TclObjects

all_ A static list of all the TclObjects. Every object that is inherited from TclObject will be
inserted in this list.

name_
This is the unique name of the object. For user defined objects the name is "_on" where n
is the unique number sequentially assigned by id_. For other objects i.e. command objects,
the names can be specified by the programmer. e.g. "ns-at"

class_name_
This contains the class names as identified by the Matcher classes. If it belongs to a
hierarchy of classes then it will contain both of them seperated by slash. For e.g.
"link/atm" for atmlinks.

next_ This is for maintaining the linked list of the objects.

Important Functions

lookup
It takes a name and returns the pointer to the TclObject with that name. The pointer can be
typecast to satisfy the needs of the function. This command is particulalrly useful for
identifying an object from the user input.

reset_all
Resets all the objects. Reset is a virtual function and every object can make its own reset
function. This is useful for resetting the statistics so that statistics can be gathered starting at
any time.

Another pure virtual function is command which should be defined for any inheriting class and for
handling its input the way it wants to.

Special Commands (Tcl.cc, misc.cc)

These commands directly inherit from the TclObject class. They are all static. Thus only one instance of
this object can be created. Not only this the object is created along with it. However they are assigned
special names. For example the NowCommand is identified by the "ns-now" string as shown.

static class NowCommand : public TclObject {
public:
 NowCommand() : TclObject("ns-now") { }
 virtual int command(int argc, const char*const* argv);
} now_cmd;

These commands include :

DeleteCommand

The DeleteCommand can be used to delete a TclOject. This not only frees the memory but also
removes it from the linked list of all the objects .This is achieved through the TclObject Destructor. The
destructor itself is a virtual function and can be over-ridden by its inherited classes. DeleteCommand
itself a TclObject with the name "delete" .

CreateCommand

The CreateCommand can be used to create an object of any class and id. CreateCommand is a class
inherited from TclObject with the name "new". It looks up the class from the Matcher classes and a new
object of that class is created. All objects are created using the new command.

AtCommand

The AtCommand is used to schedule events at a certain time from the user input. It takes in the time
and a valid Tcl command and generates an AtEvent at that time. Any valid command can be supplied as
a string. For example

ns at 0.0 "$ftp start"

This command is interpreted by the ns procedure in the ns-default.tcl file, which invokes the
AtCommand function.

NowCommand

The NowCommand is identified by the name "ns-now" . It is interpreted by the ns procedure. This
invokes the NowCommand which in turn returns the current time. The time is returned as a string in the
Tcl buffer.

RunCommand

The RunCommand is used to actually run the simulation. It is identified by the "ns-run" command.
When the user input is ns run it is interpreted by the ns-default file through the ns procedure. As a
result of which the RunCommand function gets executed. This function resets all the statistics (possibly
from a previous simulation run) and then calls the run function of the scheduler class.

int RunCommand::command(int argc, const char*const* argv)
{
 Scheduler& s = Scheduler::instance();
 s.reset();
 TclObject::reset_all();
 s.run();
 return (TCL_OK);

}

RandomCommand

This command is used to generate Random numbers. it is identified with "ns-random" command. It can
be used both with a seed and without.

Matcher

The Matcher classes are used to identify the class whose object has to be created. The Matcher class is
the parent class of all the Matcher classes. For every class whose object need to be created, you can
create the corresponding Matcher class with a chosen id for taking user input. Every Matcher class is
declared static so that only one Matcher object can be created. Just like the TclObject, Matcher also
stores all the objects in a static list of all the Matcher objects. For every new class whose object has to
be created, a corresponding Matcher class must also be created if user input needs to be applied on it.

Variable

all_ The static list of all the Matcher object
next_ Pointer to the next Matcher object.
classname_ The name of the class identifying the Matcher class

Functions

lookup
This function takes in the classname and the id and returns the TclObject of that class. The class
is identified by the match function which returrns a new object of that type if the id matches.
Lookup is called by the CreateCommand.

match It is a virtual function which matches the classname and the id and returns a new object of that
type if successful. It is called by lookup.

For example, the class DropTailMatcher is used to identify the DropTailLink class by comparing the
id "drop-tail". The user can specify the type of the link as "drop-tail" as the input and using the
Matcher class can create an object of type DropTailLink. An example :

static class ATMSwitchMatcher : public Matcher {
public:
 ATMSwitchMatcher() : Matcher("atm-switch") {}
 TclObject* match(const char* id) {
 if(strcasecmp(id, "output") == 0)
 return (new ATMOutputBuffer());
 if(strcasecmp(id, "shared") == 0)
 return (new ATMSharedBuffer());
 return (0);
 }
} matcher_atm_switch;

Class Handler

The Handler object is used as the base class for all the classes that need to handle events. All it contains
is a pure virtual function which enforces that all future inherited classes must provide this function. So if
one wants to introduce a new class which needs to handle events, then it must inherit from the Handler
class. This is essential since an Event has a field handler_ which points to the object that will handle
the event.

class Handler {
 public:
 virtual void handle(Event* event) = 0;

};

Class Event

The Event class represents the actual events that are generated by the simulator. It contains the time of
the event and a pointer to the Handler object which will handle the event. By using this as the base class,
Packet and AtHandler were defined. The advantage of this scheme is that whoever has to handle the
event, converts the event to whatever form it wants to convert it to and then handles it accordingly.

class Event {
public:
 Event* next_; /* event list */
 Handler* handler_; /* handler to call when event ready */
 double time_; /* time at which event is ready */
 int uid_; /* unique ID */
};

Class AtEvent

The AtEvent class is used for handling Tcl commands at particular events. The command is stored as a
string and is used by calling the Tcl eval function which interprets the command.

Class Scheduler

The Scheduler class is the main driver for the simulator. All events are scheduled using the Scheduler
class. Its variables include :

clock_ The current time in the network. It is protected and so can not be tempered with.
queue_ A sorted list of all the events. They are sorted according to increasing time.
instance_ A static pointer to the scheduler. It will not be initialised during a simulation
uid_ A unique id for an event. Mostly useful for debugging purposes.

Member Functions

instanceReturns the instance of the scheduler. Scheduler::instance() is used to gain access to the clock
or schedule an event etc.

clock This function returns the current time.

cancel This function looks up the uid of the event and removes it from the queue. The caller must free
the event if necessary, this routine only removes it from the scheduler queue.

Scheduler::schedule()

The Schedule function takes the reference to an event, a handler and a delay in time units into the future
when the event is to be generated. The user id for the event is generated and the event is dispatched to
the specified handler. The event is assigned a time at which it is supposed to take place. The event is
then assigned to the priority queue of events in which they are in ascending order of their times of
generation. If any object of any class needs to generate an event it has to call the scheduler. It should
provide with the handler object that will handle the event, the event (Packet, ATMCell etc.) and the
delay from the current time.

void Scheduler::schedule(Handler* h, Event* e, double delay)
{
 e->uid_ = uid_++;
 e->handler_ = h;
 double t = clock_ + delay;
 e->time_ = t;
 /* XXX replace this code with Sugih’s calendar queue */
 Event** p;
 for (p = &queue_; *p != 0; p = &(*p)->next_)
 if (t < (*p)->time_)
 break;
 e->next_ = *p;
 *p = e;
}

Scheduler::run()

This function actually drives the simulation. It is called by the RunCommand. It takes an event from
the event queue and handles it using the handler. The time is updated to be the time of the current event.
If there are no more events to handle then it stops.

void Scheduler::run()
{
 while (queue_ != 0) {
 Event* p = queue_;
 queue_ = p->next_;
 clock_ = p->time_;
 p->handler_->handle(p);
 }
}

Packet (packet.h)

This class inherits from the Event class. This is so because a packet’s movements in the network can be
easily tracked by typecasting it to an event. Thus any object that has to handle packets can simply use
the handle function. The packet includes the following fields:

type_ The type of the packet. The types are defined in packet.h. They include, PT_ACK,
PT_START, PT_STOP, PT_PRUNE, PT_GRAFT, PT_MEASSAGE, PT_NTYPE

class_ This is used for router statistics. It is also used by Class Based Queueing
qtime_ It gives the time the packet was put on queue for the current hop
lsrc_ Link-level source. This is the address of the source of the current hop.
ldst_ Link-level destination. This is the address of the destination of the current hop.
src_ The source of the packet. Used by routers
dst_ The destination of the packet. Used by the routers for routing
sport_ The port number of the source agent.
dport_ The port number of the destination agent.
size_ The size of the packet in bytes
seqno_The Sequence number of the packet
uidcnt_A static variable for assigning unique ids for the packets.
uid_ A unique id for this packet

Packet::alloc() - Create a new packet.

Var (object.h, object.cc)

This class contains the objects of the default variables declared in the input file. It contains things like
the name of the variable its characteristics etc. Whenever an object is created its default values can be
set in the constructor by searching for the appropriate variables and class name.

name_ The name of the variable

readonly_
Whether the variable is readonly or not. Readonly variables in ns_default cannot be altered
while other default variables can be altered during the simulation.

All the network default variables belong to one of these classes. There are basically two types of classes
inheriting from the base class Var. VarReal and VarInt. You can add your own variables in the
ns_default.tcl file but they will be characterised by one of these.

VarReal

This class inherits directly from the Var class. The VarReal class handles the real numbered values i.e.
double. This class takes in the values assigned to real numbered variables and creates the VarReal object
for them. It also takes in the names of these variables and assigns the types whether they are read only or
not.

VarBandwidth

This class inherits from the VarReal class. This is because it takes in real numbers for the bandwidth of
links etc.

link_bw("ns_link", "bandwidth", &bandwidth_, 0);

The main difference is that they convert values with units to double values. It uses a function bw_atof

which takes in a string and converts it into a double. For e.g.

set ns_link(bandwidth) 1.5Mb

the 1.5Mb string is converted to 1,500,000. It understands k and K for 1000, m and M for 1000000 and
B for bytes while b for bits.

VarTime

This class too inherits from the VarReal class. Again it can take in units of time and convert them to
values. This is done by calling a function time_atof. Examples of such variables are

set ns_delsink(interval) 100ms
set ns_cbr(interval) 3.75ms
set ns_rlm(interval) 3.75ms

VarInt

This class also inherits from the Var class. It takes care of the whole numbers (integer values) that are
assigned to default variables. Some examples are

set ns_sink(packet-size) 40
set ns_rlm(packet-size) 210
set ns_link(queue-limit) 50

VarBool

This class inherits from the VarInt class. As must be evident from the name it takes care of the default
boolean values that are assigned to different variable e.g true or false. It simply looks at the first letter of
the string and if it is T or t then it is assigned a value of 1 and 0 otherwise. Some examples are

set ns_class(plot) false
set ns_red(setbit) false
set ns_red(drop-tail) false
set ns_red(wait) true

NsObject (object.h, object.cc)

NsObject is the base class for all the entities in a Network. These include Nodes, Links, Agents, Trace
and DataSources. Node, Link and Agents are derived from both the Handler and NsObject. The
reason for this is that these 3 objects have to handle various events while the others do not have to.
NsObject contains a list of Var objects which have been stored from ns_default.tcl file. So when an
object inherited from the NsObject class is created the default values of its variables can be set using the
appropriate function from these functions; link_real, link_bw, link_time, link_int and link_bool. This
can be done in the constructor of the class. As all the Var objects are visible to all the objects, the user
input can be easily translated into their respective values. Also one avoids the use fo hardcoded
constructor values and can change the default values without recompiling the program. Another attribute
of this class is the Trace object which if attached to an object can be used to trace its statistics. Other
objects like various data sources and flow managers are also derived from NsObject. It contains the
NsObject class which inherits from the TclObject class. The Var pointer of the var class is also defined.

This is responsible for handling the inputs from the ns_default.tcl file.

Functions On the NsObject Class

NsObject::NsObject()

The NsObject constructor sets the default values for the var and trace variables equal to 0.

void NsObject::insert(Var* p)

This object inserts the variable that is declared to the list of variables of the particular NsObject hence
created. It takes in the pointer to the variable as an argument and returns nothing.

int NsObject::command(int argc, const char*const* argv)

This command function interprets the command in ns_default.tcl file. The NsObject can interpret the
commands of set and get. i.e. setting and retrieving the values of the variable. If it is unable to handle
the command it hands it over to its parent class TclObject. This is true for all the command functions in
any class. If it can not interpret the command then try the higher class in the heirarchy. For example if a
command does not match any of the cases in the link::command function so it is passed to the upper
class in the object hierarchy i.e. the NsObject command function. Here it can match with the set
command and the get command. The set case sets the values for the particular variable. The get case
returns the value. If that too fails then hand over to the TclObject function. The trace case switches on
the trace mode set for connections. The following commands of the link are matched in NsObject
command function.

$link0 set bandwidth $bw
$link0 set delay $delay
int Link::command(int argc, const char*const* argv)
int NsObject::command(int argc, const char*const* argv)

Var* NsObject::varlookup(const char*var) const

As must be evident from the very name of this function. Given the name of the variable, it searches the
name in the list and returns a pointer to the variable. In case it is not found it returns error that the
particular object is not found.

Int NsObject::get(const char*var)

This function is invoked from the Command function (described above) after looking at the "set"
keyword in the ns_default.tcl file. It invokes the varlookup function (described above as well) which
matches the name whether it is there or not and returns the var object. The get function then eventually
returns the tcl instance of this variable and its value. If the varlookup returns a null i.e. it did not find the
name in the list it returns an error.

Int NsObject::set(const char*var, const char*val)

This function too is invoked by the Command function described earlier after matching with the "get"
keyword in the ns_default.tcl file. It takes in two arguments, the name of the function and the value that

is supposed to be set. It invokes the varlookup routine first to see whether the variable name exists in the
list of variables or not. If yes then it checks to see whether its value is readonly or not, if it is readonly it
does not set the value and prompts that it is readonly and hence cannot be modified. On the other hand if
the value is not readonly it sets the value attribute of the variable.

void NsObject::link_real(const char* a, const char* name, double* val, int readOnly)

This function gets invoked from the different link files. For example in the file red.cc. It invokes the
VarReal function which declares a variable that can take in real numbers. It also sets the values of the
name and characteristics of that particular Tcl Instance belonging to the variable. It is usually called
from the constructor to initialise the values to the default values.

link_real ("ns_red", "thresh", &edp_.th_min, 0);
link_real ("ns_red", "maxthresh", &edp_.th_max, 0);

void NsObject::link_bw(const char* a, const char* name, double* val, int readOnly)

This function gets invoked from the link files. For example the link.cc file. It inovkes the VarBandwidth
function in return (which inherits from the VarReal function). This function returns the variable of type
VarBandwidth. Then the set function is invoked which sets the name and value of that particular
variable to the TclObject. Eventually the insert function is called which adds it to the list of variables.

link_bw("ns_link", "bandwidth", &bandwidth_, 0);

void NsObject::link_time(const char* a, const char* name, double* val, int readOnly)

This function gets invoked as a result of the following commands in the link.cc files. This function
declares an object of type VarTime which inherits from the Class VarReal. This variable in turn is given
to the set function which sets the name of the function and its value i.e. ns_link and delay values. It then
invokes the insert function which inserts this variable in the list of variables.

link_time("ns_link", "delay", &delay_, 0)

void NsObject::link_int(const char* a, const char* name, double* val, int readOnly)

This function gets invoked as a result of the following commands in link.cc. This function declares an
object of type VarInt which inherits from the class Var. This variable is turn is given to the set function
which sets the name of the function and its values. It then invokes the insert function which inserts this
variables in the list of variables.

link_int("ns_link", "queue-limit", &qlim_, 0);
link_int(0, "queue-length", &qnp_, 1);
link_int(0, "queue-size", &qnb_, 1);

void NsObject::link_bool(const char* a, const char* name, double* val, int readOnly)

This function gets invoked as a result of the following commands in red.cc. This function declares an
object of type VarBool which inherits from the class VarInt. This variable is turn is given to the set
function which sets the name of the function and its values. It then invokes the insert function which
inserts this variables in the list of variables.

link_bool("ns_red", "bytes", &edp_.bytes, 0);

double bw_atof(const char*s)

This function converts the input at the ns_default.tcl file e.g

set ns_link(bandwidth) 1.5Mb

It takes it in and converts it into its reall units i.e., 1.5 million bits.

double time_atof(const char* s)

It takes the input time in the units and conversts it into the appropriate number. There are various case
options available for it. m millisecod, u microsecond, n nanoseconds, p pecosecond. For e.g.

set ns_link(delay) 100ms

For an all round use of the NsObject class, here is the constructor for the REDQueue

REDQueue::REDQueue()
{
Tcl& tcl = Tcl::instance();

link_bool("ns_red", "bytes", &edp_.bytes, 0);
link_real("ns_red", "thresh", &edp_.th_min, 0);
link_real("ns_red", "maxthresh", &edp_.th_max, 0);
link_int("ns_red", "mean_pktsize", &edp_.mean_pktsize, 0);
link_real("ns_red", "q_weight", &edp_.q_w, 0);
link_bool("ns_red", "wait", &edp_.wait, 0);
link_real("ns_red", "linterm", &edp_.max_p_inv, 0);
link_bool("ns_red", "setbit", &edp_.setbit, 0);
link_bool("ns_red", "drop-tail", &drop_tail_, 0);

link_bool("ns_red", "doubleq", &doubleq_, 0);
link_int("ns_red", "dqthresh", &dqthresh_, 0);
}

Link (link.h, link.cc)

This class is the representation of the output link. A link is unidirectional. A node can have multiple
output lines i.e. a router or a single output line (the source). However two nodes can not have more
than one link. The link class inherits from the Handler and NsObject classes. The main attributes of the
link class are

src_ The Starting end of the link
dst_ The Destination node of the link
qnp_ The Number of Packets in queue
qnb_ Number of bytes in the queue
qlim_ Maximum allowed packets in queue
busy_ It is true while a packet is being transmitted
neighbor_ The destination node. Used for scheduling the next event
bandwidth_ The bandwidth of the link in terms of bits
delay_ The latency in the link delay is given by delay it is in seconds
busytime_ Total time the link was busy
ib_ The integrator for the bytes
ip_ The integrator for packets
iu_ The integrator for utilization
qtrace_ For tracing the queue
flowmgr_ The flow manager if attached

There is a separate Queue class, which is incorporated into the link. The link is implemented as a queue
since the out going buffers at any node are in directly unique for each link and hence can be considered a
part of the link. The enqueue, dequeue, and qlen functions are declared as being virtual implying that all
the classes inheriting from the link class will have to make their own functions regarding the above
mentioned operations.

Functions

Link::Link()

The constructor for the link, looks up for the variables by using the link_real, link_bw, link_int,
link_time functions and initializes the parameters such as the bandwidth, delay, queue limit, for the link
with the values from the default file.

void Link::update(Packet * pkt, int how)

This function is called every time the queue size changes and updates the vital statistics of the queue.

void Link::send()

This function dequeues the packet from the link queue, calculates the transmission time required, adds
the delay to it that has to go through on the link, updates the utilization. and eventually an event is
generated for that packet to get off the link. It also sets the busy attribute to 1. Also if a trace object is
attached to the function then it will record the hop for the packet. This function is called by the handle
function

void Link::send()
{
 Packet* pkt = deque();
 if (pkt != 0) {
 double txtime = pkt->size_ * 8. / bandwidth_;

 Scheduler& s = Scheduler::instance();
 pkt->lsrc_ = src_;
 pkt->ldst_ = dst_;
 s.schedule(neighbor_, pkt, txtime + delay_);
 s.schedule(this, &intr_, txtime);
 busy_ = 1;
 busytime_ += txtime;
 if (trace_ != 0)
 trace_->hop(src_, dst_, pkt);
 }
}

void Link::handle(Event* e)

This function verifies whether the link is busy or not, if it is, it marks it idle (not busy), and then it
calles the send function to handle this event (as described above). Since the link class is the base class
for all other link classes, so an object of this class can never get formed. Hence it implies that this
particular handle function never gets called, so we can say that whenever this function is called it can
only be through an interrupt.

void Link::send(Packet* pkt)

This is different from the previous send function as it takes the packet as an argument. This function
accepts a packet for transmission on the link. The node class calls this method unlike the previous send
function which was called by the handle funciton. The log-packet arrival and departure functions are
called to update the statistics for the queue such as size in terms of bytes and also the number of packets
and updates them and output them in a file. These functions also invoke the plot function if a Trace
object is attached to it.

Link::command

This function is called from the interpreter to interpret Tcl commands. The following commands are
interpreted here:

 $link install $src $dst
 $link stat $class $which
 $link integral qsize
 $link integral qlen
 $link integral util
 $link queue-trace $trace

This can execute all the operations that can be defined on the link. Since the link class inherits from the
NsObject class, so this is virutal function that Link had to define on its own. So for the cases which Link
cannot handle, it passes over (i.e. returns to) the NsObject class making it responsible for further
handling. The commands having the above mentioned syntax are handled by this function. First the
arguments are checked and then the strings are matched and appropriate action is taken. Thus you can
gather statistics from your Tcl input by executing these commands.

Link::remove

This function is used to remove the link when it has been dropped or something.

Link::log_packet_arrival/departure

These functions are related to the statistics gathering functions of link. When a packet is put on a link the
arrival statistics qnb etc need to be updated, similar is the case with departure statistics. But these
functions are invoked only when the trace mode is on and the network communication traffic is being
monitored.

Link::reset

This function is used to reset the link statistics that the user might be interested in. So that after reseting
them and running the simulation, they can monitor the actual statistics gathered.

From the link various types of links are derived. These include the following

LossyLink (lossy.cc)

This inherits from the basic Link class. The only functions that are different are the enqueue and
dequeue functions.

void LossyLink::enque(Packet* p)

The enqueue functions takes in the packet as an argument. It invokes the enqueue function and inserts
the packet in the queue. It then logs the packet arrival. Then it invokes the loss_policy function which
determines whether the packet is to be discarded or not. It then calls the remove function to remove the
packet if the loss-policy allows for it. otherwise it lets it go.

Packet* p LossyLink::deque()

This simply dequeues the packet from the link when it is time for it to get off it and go to some other
link, switch or node. It records its departure.

It can loose packets according to 2 different disciplines. Deterministic or uniform. This is implemented
by the following function

virtual int packet_policy(Packet*) =0;

The classes UniformLossyLink and DeterministicLossyLink use their own methods for determining
whether to discard the algorithm. In UniformLossyLink the loss depends according to a random
uniform number. If the random number is more than the loss probability the packet is not lost.

UniformLossyLink::packet_policy(Packet *p)
{
 double val = Random::uniform();

 if (val > loss_prob_) {
 return (1);
 }
 return (0);
}

DropTailLink (drop-tail.h, drop-tail.cc)

This class inherits from the Link class. The functions that were declared as virtual in the Link class i.e.
the enqueu and dequeue functions are defined separately for this DropTail Link class. It is identified by
the DropTail Matcher class which inherits from the main Matcher class. This class is necessary when
taking input from tcl script (i.e. the input file) since it verifies and matches the string and creates the
new droptail link. So it is necessary when there is need to create a droptail link.

DropTailLink::enqueue(packet* p)

This function invokes the enqueue function of the queue class. It also checks to see if the total number
of packets currently in the queue qnp in the queue is exceeding the limit qlim assigned to the queue or
not. If it is exceeding the limit then, it is removed from the queue and also the log-packet departure
statistics are also updated. (This is actually the drop-tail algorithm).

DropTailLink::dequeue()

This function is invoked when the packet is supposed to get off the link to get onto the destination node,
the switch buffer or possibly another link. It simply dequeues the first packet in the queue that needs to
be dequeued according to the time. It then hands it over to the log-packet-departure function which
updates the statistics.

REDQueue (red.cc)

This type of a link implemented the RED algorithm also inherits from the main link class. It only has
those functions that have been mentioned to be virutal in the link class. It also has its own reset function
which overrides that of the basic class. For further details on this class it is necessary to understand the
algorithm of which this is an implementation. So in order to gain knowledge of the algorithm refer to the
following paper Sally Floyd and Van Jacobson " Random Early Detection Gateways for Congestion
Avoidance" http://www-nrg.ee.lbl.gov/floyd/red.html

CBQueue (cbq.cc)

This is the implementation of the Class Based Queueing. Again the details of this algorithm are
available at ftp://ftp.ee.lbl.gov/papers/params.ps.Z. The CBQ class uses packet-by-packet and
round-robin queueing.

Node (node.h, node.cc)

This class Node inherits from the NsObject and Hander classes. The node represents the physical
nodes of any network. They contain the following attributes

next_ The pointer to the next node in the network
cnt_ A static total number of nodes in the network.
addr_ The address of this node in the network. It is assigned by the value of cnt_
nport_ The number of agents attached to this node.
route_ The list of links. Used for routing. route_[destination] gives the link to route the packet
links_ The list of outgoing links from this node
maxport_ The maximum number of ports (agents) that can be attached to this node
demux_ The table of agents attached to this node. demux_[p->dport_] gives the required port
mdemux_ It is the list of multicast agents

Link State and Group Entity structures have not been done as yet. Since there is no next pointer in the
link class, so in order to maintain the List of links attatched to a node. The Link State structure is the
basic unit of this linked list of links.

This class inherits from the parent Matcher class. The matcher function takes input from the input file
and creates the object.

Node::Node()

The Node constructor initializes the variables. It assigns the next count number as an address to the
newly created node. It also initializes the maximum number of ports that is 64 (preset). This will
double whenever this gets full. It also adds an entry in the table of maxagents and initializes them as
well.

Node::~Node()

The destructor function deallocates the memory assigned to the routing table and the table containing the
traffic descriptions.

Node::free(AgentList* p)

The free function is invoked when a traffic has completed its duration and is stopped. So this function
deletes its entry from the list of Agents.

void Node::add_link(Link* p)

The add_link function is inserting the newly created link at the beginning of the linked list. It then
makes an entry for this in the LinkState List.

void Node::setroute(int dst, Link* p)

The setroute function is invoked by the route-logic class. It returns the link on which the packet is
supposed to be routed to if it comes destined for a certain destination.

int Node::add_agent(Agent* p)

The add_agent function adds the agent in the table of agents and returns the port number that it has

assigned to the new agent. In case the number exceeds the total number of agents allowed (maxport)
the array is doubled (maxport is also doubled) and then the very same procedure as above is applied.

send-graft, add-group,send-grafts, record-prune, send-prune are functions that facilitate
multicasting of TCP in ns i.e. to send messages to a group (if required).

void Node::unicast_forward(Packet* p)

The unicast_forward function is required for normal transmission of packets as compared to the
multicast_forward. It takes in the packet as an argument and checks whether it is destined for itself (i.e.
the particular node that calls this function), if it is so it takes the destination port from the packet (an
attribute of it) and assigns it to the port. Then it finds out the agent from the reference of port number. If
there is an error condition i.e. the agent doesn’t exist it is freed and appropriate actions are taken. If not,
the packet is handed over to the receive function of the agent which takes appropriate action and the
function returns. If not, it is routed to the appropriate link on which it is supposed to be routed given the
destination of the packet (refering from the routing table). and then the packet is handed over to the
send function of the link which handles it. This function is invoked by the handle function which is
supposed to handle the event as required, either multicast forward or unicastforward.

void Node::handle(Event* e)

This function handles an event for this node. If the route does not exist then it exits. Else it determines
the type of the packet, i.e. whether it is multicast or unicast and forwards it accordingly.

int Node::Command

This function is used to interpret the user input. It can be called as

$node agent $port

$node addr

In the first case it returns the address of this node. This is used when creating connections where the
source or destination node’s address has to be found. In the second case it returns the agent attached to
the specified port.

RouteLogic (route.cc)

RouteLogicMatcher is the class that inherits from the Matcher class. This class identifies the route-logic
object which is bring used. It sets the routing table of all the nodes to all other nodes based on the
minimum hops routing logic. Whenver a new node is created the routelogic object is created and is
assigned to the node and the routing table is built up once again. This implements the RouteLogic class
that inherits from the TclObject class.

RouteLogic::command

This function can be used to either, call the routelogic object to compute the routes or for inserting a
node to the routing logic’s list of nodes.

RouteLogic::compute-routes()

This function actually implements the min-hops algorithm. i.e. by looking at the destination it calculates
the minimum path from the particular node to the destination. Every time a node is added this function is
invoked to update the routing table.

Agent (agent.h, agent.cc)

Agents are the objects that actually produce and consume packets. They are the transport entities and/or
processes that run on end hosts. Each agent is automatically assigned a port number unique across all
agents on a given node (analogous to a tcp or udp port). The agent knows the node with which it is
connected to so that it can forward its packets to it. It also contains the packet size, the type of traffic,
and the destination address (both node and agent). The Agent class is the base class for all types of TCP
implementations. These include the TCP agents including Reno, Newreno, sack1 and also the TCP sinks
including DelACKSink, SACK1TCPSink, SACK1DelACKTcpSink. There are corresponding matcher
classes for all these agents. Some types of agents may have sources attached to them while others may
generate their own data. For example, you can attach ‘‘ftp’’ and ‘‘telnet’’ sources to ‘‘tcp’’ agents but
‘‘constant bit-rate’’ agents generate their own data. The class agent inherits from the Handler and
NsObject classes. This is the base Agent class, those classes inheriting from this class have to add the
functions declared as virtual on their own. For examples all the classes that will inherit from the agent
class will have to make their own destructor and receive functions. Some of its variable members are as
follows:

node_ The node to which this agent is connected. This is needed for passing a packet generated by the
agent to be handed over to the node for further transmission.

sport_ This is the port to which the agent is attached inside this node
daddr_This is the address of the destination node.
seqno_The current sequence number of the packet to be sent
size_ The size of the packet to be sent
type_ The type to be placed in the packet header
class_ The class to be placed in the packet header

Functions

Agent::Agent (int pkttype)

It sets the default values for different variables required to be set. It calls the memset function that sets
the pending and sizeof pending values. It also invokes the link_int function it initializes the class
variable and its values.

int Agent::command(int arg, const char*const* argv)

It can take in the following commands

$agent addr - Returns the address of the node
$agent node - Returns the name of the node
$agent dst-addr - Returns the address of the destination

$agent port - Returns the port of this agent
$agent dst-port - Returns the port of the destination port
$agent seqno - Returns the sequence number of the cells sent uptil now
$agent join $group - Join the group
$agent leave $group - Leave the group
$agent node $node - Attach this agent to the node
$agent connect $node $port - Connect this agent to the port of the node

void Agent::handle(Event* e)

The timer can handle two types of events, it can either be a packet to be handled or it can be a timer
interrupt. If it is a packet, it sends it to another function Agent::recv(p) to handle. If the program is
working well the packet should not come to the base class NullAgent, it ought to have been handled by
the source or sink agents. This NullAgent only frees the packet. It only sets the Timeout timer since it is
the base class.

Packet* Agent::allocpkt(int seqno) const

This function allocates a packet using the Packet::alloc() function. Then it initalizses all its generic
attributes and returns the packet. It only takes in the sequence number of the packet as an argument. This
function is invoked for example whenever a packet needs to be generated. e.g in the tcp.cc file void
TcpAgent::output(int seqno) it calls this allocpkt function to get a packet with the given sequence
number and all the parts of the header initialised.

The files named tcp-* contain the various implementations of agents.

Trace (trace.h, trace.cc)

This class inherits from the NsObject class. It is useful for outputs of the results of the simulation into an
output file.

int Trace::command

It accepts the following commands.

$trace detach - Closes the channel to the output file
$trace flush - Flush the current channel
$trace attach $fileID - This creates a channel for this trace object and attaches to the specified file
$trace callback $proc - It resets the callback procedure name.

void Trace::format(int tt, int s, int d, Packet* p)

This function formats the output in the form of a string. The dump function eventually dumps it into the
output file. This is a sample of the input file, test-suite.tcl which activates the trace. It opens the traceFile
out.tr for writing. It is also given the time at which the trace is supposed to begin.

proc openTrace { stopTime testName } {
 exec rm -f out.tr temp.rands

 global r1 k1
 set traceFile [open out.tr w]
 ns at $stopTime \
 "close $traceFile ; finish $testName"
 set T [ns trace]
 $T attach $traceFile
 return $T
}

Other Helper Classes

Integrator

This class is used for accumulating the statistics of an object. It takes into account the length of time for
which a certain entry remains in action. It is useful for finding the averages over time like the queue
lengths etc.

Sigma

This class simply cumputes the mean of the data entries.

Random

This class generates uniform or exponential Random numbers which are the Random Early Detection
algorithm.

ATM Classes

ATMNetwork (atmnetwork.h, atmnetwork.cc)

The AMTNetwork is an actual complete ATM Network. It has been derived from the Node class so that
the TCP traffic can be simply routed to the Network. The Network appears to the TCP traffic as just a
single node. The advantage is that we do not have to change the TCP routing logic and still perform
independent routing inside the ATMNetwork. The Network knows all the ndoes and the links. The
connection admission control and the routing logic is also implemented here. The user can specify
his/her own routing logic and the connection Admission control algorithm. The number of nodes in the
network is limited only by memory. The number of nodes simply double whenever all the nodes are
used. The links are maintained as a matrix of links. When a packet comes to the network, it is broken
down and handed over to the appropriate node. Later when the packet is recovered it is sent back to the
network which passes it on just like any normal TCP node. There can be multiple ATM Networks
declared in the total topology. This adds another dimension to modelling networks.

Variables

nodes This is a list of all switches and sources counted as ATMNodes in the ATMNetwork.
This can only contain objects of type ATMNode and not of other types.

map
This is used to identify the external TCP connections corresponding to the ATMNetwork
connections. The map variable, when given a TCP node address returns an ATM Node
index. map[tcpnode address]->ATMNode index

earliest_start

The earliest time a packet a packet can arrive from any link. This is needed to ensure that
the packets from different links do not overlap. The overlapping can occur since the
ATM Links can only transmit at slots and while a cell is waiting for a slot other packets
can arrive.

curr_nodes This gives the total number of nodes in the network at that particular moment.

max_nodes

This give the total number of nodes that can possibly be in the network, or the maximum
number of nodes that can be declared. This is arranged such that whenever the current
number of nodes is equal to the max_nodes, it is doubled, so that the network is not
constrained by it. Hence the only limitation on increasing the total number of the nodes
in the network is that of the memory.

link_table

his is a table of ATMLinks contained in the network. The links are stored in the form of
the source and destination in the table. Hence each link has a unique source and
destination. So given a destination and a source number it returns the corresponding link.
link_table[src][dest]-> the link.

routelogic
This is gives the routing logic that is supposed to be followed by the ATM network.
Route logic knows the topology of the whole network , it is atatched to the network, and
the routing logic is implemented to the whole network.

Functions

static class ATMNetworkMatcher:public Matcher

This is the matcher function of the ATMNwork class. It inherits from the main Matcher class. This class
identifies the ATMNetwork object by using the identifier "atm-network" . The "new node
atm-network" is actually creating an object of type ATMNetwork.

int ATMNetwork::lookup_id(const char * id)

It is a function which when given the name of the object returns the index of the object with reference to
the whole network. It looks up the name is located by using the name() function and comparing with all
the values in the list of nodes. If it is found then the index of the object in the list of nodes is returned.

int ATMNetwork::attach(Node * t, ATMNode* a)

This function records that which TCP Node is attached to which ATM Node. It uses the
TclObject::name() function to identify objects. If the function is successful in recording the name of the
function it returns 1 else it returns a 0. The function actually looks in the map function (it gives it the
address of the node) and it returns an index . The function then add the dummy link to the node and
then returns.

int ATMNetwork::command(int argc, const char*const* argv)

This function is called from the Tcl input and by matching the user command performs the actions
associated with it. Upon coming accross the "route" keyword it calls the routelogic object to Associate a
routing logic with the network. If it is unable to find the object it returns false, otherwise it returns ok.

Upon the "add-node" command it looks up the node and adds it to the network. As a last alternative if
the ATMNetwork is unable to handle this command it passes it over to the class previous in hierarchy
(i.e. one above it), in this case (Node::command(argc, argv)).

void ATMNetwork::add_node(ATMNode * node)

This function is called through the command function upon seeing the add_node keyword. It actually
adds the ATMNode to the network. If the nodes reach their maximum then simply double the array. i.e
If the current number of nodes becomes equal to teh maximum number of nodes, the maximum number
of nodes is doubled.and all the nodes are initialized.

Then the ATM adaptation layer corresponding to that particular report is initialized. Then the address of
the node is set to be the current sequence number. The node is made to point to the network so that it
knows the network to which it is associated with. At the same time the node is added to the list of nodes
at the index of the current number of nodes. The route logic object is also initialized. It is made to the
current number of nodes, the links and the routing table.

void ATMNetwork::handle(Event * e)

This function is responsible for handling the functions particularly generated for this network. If a
packet comes it is broken and passed on to the appropriate ATM Node. When a packet is recovered the
outgoing packet is handed over to the TCP network. When a packet enters the network for the first time
its destination is pointing to its node. It is broken into 47 bytes but it is transmitted at a rate of 53 bytes
to the atmnode (this is after the header is attatched. At the same time the destination is changed to some
other destination rather than the current node which is initally the case. When this packet arrive again its
destination is changed and it is treated like just another TCP packet. If the destination address of the
packet is not equal to the current node it means this is a recovered packet which is about to leave the
ATMNetwork. If this is the case then its original destination is restored it is signalled to the TCP
network. If the destination address is the address of the current node then the packet is a new packet
entering the packet for the first time. It is handled as follows.

Its local destination is changed to one more than the current address. This packet is broken into cells and
its source and destination are altered as compared. The map function called for the source of the
ATMCell gives the ATMNode from which this particular packet should be sent. The outgoing TCP node
gives the ATM destination. The cell priority is set to 0 since all TCP traffic is considered to be of UBR (
Unspecified bit rate). The flag of the cell that indicates whether the cell is queued or not is also set to 0.
A new link which is the input ATM link is also created. The transmission time of the cell is calculated
on the basis of 53 bytes (47 + the headers attatched). Routing tables are determined based on the
routing strategy established. This also returns any delay associated with the establishing of the routes. If
there are multiple packets arriving on the same link (i.e. implying queuing) the earliest_start function
gives the time for which the packet must wait before it can be handled. The packet is broken into the
number of cells it is supposed to be broken into then the next earliest start time is also calculated. After
this the packet is handled as a normal TCP packet, using Multicast or unicast forward routing
algorithms.

void ATMNetwork::add_link(ATMLink* link, int src, int dst)

This function adds teh link to the list o fall links in a network. A link can only have a unique pair of
ends, i.e. there cannot be multiple links between two nodes. The link_table function returns the
particular link if given a source and a destination.

ATMAal (atmaal.h, atmaal.cc)

In real life the AAL layer needs to keep record of all the cells in a particular packet from a connection.
In our design we only need the last cell received. This is valid since the aal layer is separate for every
source. So from one source cells from two different packets will arrive in the same sequence i.e. the
cells from the two packets would not overlap. Thus only looking at the next cell, if it is our of sequence
we can empty the aal buffer. Also cells are dropped here if they are out of sequence indicating that the
packet is incomplete.

Variables

flag_ This is the buffer that is used to indicate the state of the buffer. It shows a 0 if the buffer is
empty and a 1 if the buffer is full.

seq_no_ This is the private variable that shows the sequence number of the cell, and keeps record of it
in the ATM Adaptation layer.

tcp_seq_TCP packet sequence number

tcp_port

The sequence number of the packet and its port number identify whether the cells belong to
the same packet and connection or not. Since the port number is unique to a particular
connection. We need the port number to identify the cells of the packet because two packets
from different agents i.e. (different port numbers) can have the same sequence number.

tcp_addrThe address of the particular node with respect to the topology of the network. This is
necessary alongwith the tcp_port_ number of two cells for them to be in sequence.

Functions

ATMAal::ATMAal()

This is the constructor, which initializes all the above mentioned attributes of the ATM adaptation layer.

int ATMAal::Receive_Cell(ATMCell* cell)

This is the main function of the ATM Adaptation layer to reassemble the cells coming in and converting
them into TCP/IP packets. This function receives a cell and returns whether a packet is received or not,
if it is then it returns a 0 else it returns a 1. The function checks if the cell received has sequence number
1, if it is so it means it is the first cell of any pacekt, so it inserts the cell into the buffer and marks the
buffer full. If it is theonly cell of the pacekt then return full. Else wait for other sequence numbers of the
same packet.

If the bufferis empty i.e. the flag is = 0, and the packet is not of sequence number 1 then it is supposed to
be discarded, since the AAL layer is not supposed to recover the pacekt it is just supposed to mark it and
discard it.

Now if the cell that comes is the next one in sequence then it is inserted. If again this is the last sequence
number of the cell then return full and the buffer is marked empty. Else the expected sequence number is
advanced and the buffer is marked full.

ATMNode

This is the parent class for all the nodes in the network. This includes the ATM traffic sources and the
switches. It is derived from the NsObject and Handler classes so that they can handle packets and also
accept tcl commands. We kept it seperate from the TCP node because we wanted to keep them excluded
from the TCP routing algorithm. The nodes include both ATM Switches and ATM Sources. The nodes
know the network they belong to and the links that are attached to them. They also contain dummy links,
which are just used to identify the external links by which these nodes are implicitly connected. The
ATMNetwork is the actual entity that is connected to the TCP nodes. Similarly they have their own
routing tables. The ATM AAL layer is also implemented here.

aal
This is conceptually how the ATM Adaptation layer is implemented. Each node has an
AAL layer for each node in the ATMNetwork. This works because two packets from
the same node in the network can not overlap. i.e. they will arrive in sequence.

total_nodes This gives the total number of nodes in the network.
no_links_ This gives the total number of links connected in the network.
addr_ This gives the address of the node.

network_

This serves two purposes. Firstly the node should know which network it is pointing to.
Since after a packet is complete it is handed over to this network. This network handles
the packet. Also the node is supposed to refer to the network when it is in need for
resources.

links_ The list of outgoing links from the node. These are all the atm links emerging from the
node, this does not include any other links

dummy_

This is a list of all the dummy links (external links). The dummy links are It has two
attributes to it. One is the address of the external node, and the other is the port number
of the switch. Each individual component also contains a pointer to the next link. This
is a component of the linked list which contains the dummy lists. The need for the
dummy link arises since the external links are physically connected with the
ATMNetwork and not with the individual atmnode.

dummy_count This gives the total number of dummy nodes attatched to the node
port_table The list of ports in this switch.

Functions

ATMNode::ATMNode()

This is the ATMNode constructor. The number of ATMLinks is initially 16 and doubles whenever the
capacity reaches its maximum. The port table is also created for 16 entries corresponding to the number
of ATMLinks.

ATMNode::ATMNode(int tn)

This is another constructor which changes the default value of the total number of nodes equal to the
number given to it as argument.

void ATMNode::init_aal(int tn)

This function initializes the aal layer. This function is invoked by the ATMNetwork whenever there is a
change in the total number of nodes in the network. This function initializes the total_nodes equal to the
number given as argument. Then creates an object of type ATMAal of size equal to the total number of
nodes.

void ATMNode::add_dummy_link(int ad)

This function adds a dummy link to this node for the specified address given to it as an argument. This
function is invoked by the network when it connects a tcpnode to an atmnode.

void ATMNode::get_dummy_port(int ad)

This function searches for the address in the list of dummy ports and returns the port number of the
queue. This function gets the address of the node to be searched. It them compares and searches for it in
teh list of nodes. It returns a -1 if it does not find the required port not. if it does then it returns the port
number of the queue.

void ATMNode::add_link(int ad)

This function adds a link to the particular node for which it is invoked. If the total number of nodes in
the atm network reaches the maximum number that there can be, the maximum number in the network is
doubled. It updates the network since a new node is being added to the network. It also makes a new
entry into the list of links. Apart from this the port_table is also increased. The total number of links is
also incremented.

ATMCommand (atmcmd.cc)

This is inherited from the TclObject class. User input command is translated into the command function
by identifying the keyword "connect".

int ATMCommand::command(int argc, const char*const* argv)

This handles the command for connecting a tcp node to an atmnode e.g, it responds to user input of the
following sort in the test-suite.tcl file. It searches for the tcpnode, the atm network and the atmndoe and
records in map array of the network which node is connected with which internal node. Also it creates a
dummy link in the atmnode.

ns connect $tcpnode $atmnetwork $atmnode

ATMLink (atmlink.h, atmlink.cc)

The atmlink inherits from the base link class. The difference between this class and all the other classes

is that the end nodes in this case are the atm nodes, and also the transmission time of the cells from end
to end is fixed. The transmission time is fixed due to the standard characteristic that the cell size of the
ATM cell is fixed i.e. it is 53 bytes. The atmlinks are slotted in nature they are synchronized and start at
the same time i.e. 0.0, so a cell can only get on a link if its time is a multiple of the size of the slot.

neighbor_ This identifies the end node for the particular link.. It is needed so that any cell arriving
on the link can be routed to this node.

start

This attribute gives the start time at which a cell can get on a particular link. If the time at
which teh cell is supposed to get on the link is not a multiple of the slot size, it is adjusted
so that it becomes one and meets the criterion. This is needed for synchronizing the
arrival of cells on exact slots.

available_bwThe bandwidth available on the link. It is used by the Connection Admission Control.

Functions

static class ATMLinkMatcher

This class inherits from the base matcher class. It is used for identifying the ATMLink. The type "atm"
identifies it to be an ATMLink. It matches with the input and creates a matcher_atm_link;

ATMLink::ATMLink()

This is the constructor for the ATMLink class. It initializes the private members of the ATMLink class
the neighbour and the starting time of the links to 0.0.

inline void ATMLink::neighbour(ATMNode* p)

This constructor sets the neighbouring to the ATMNode p passed to it as a argument. It also initializes
the destination address to the address of the node given to it as an argument. This too is a sort of a
constructor.

void ATMLink::handle(Event* e)

This is the handle function for the ATMLink class. It handles teh event that is passed to it. Its main
function is to find the slot size. Then it schedules the time at which the cell is supposed to get off the
link and reach the other end. Since there is a restriction on slotted ATMLinks that cells can only get on
and off the links on a given slot. The slotsize is calculated by dividing the total number of bits in a cell
i.e. (53* 8 = 424) by the bandwidth of the link which is in bytes per second so this gives the slot size in
seconds. Then an instance of the Scheduler is created. The current time cur_time is set equal to the time
of the scheduler. If this curr_time is less than the start time of the link, then current time is assigned
equal to the start time. Then the slot size is added to the current time. If time lies between two slots it is
upgraded so that it falls on the next slot. Then the neigbour, the cell itself, the next slot time and the
delay is passed to the schedule function of the newly created scheduler object. The slotsize is added to
the time for which the link will remain busy.

int ATMLink::command(int argc, const char*const* argv)

This function is used to override the "install" command to be between two ATMNodes. It checks that
both the ends are atmnodes, if the source and destination are the same then there is an error. If not then
the destination is made the neighbour. The link is then added to the source. Otherwise the command is
returned to the command function in the above hierarchy.

ATMRouteLogic (atmroute.h, atmroute.cc)

This is the class that inherits from the main TclObject class. This class establishes the route from all
sources to all destinations. The routing logic can be used any which way it is required as.

nodes_ This gives the total number of nodes in the network.
curr_nodes_ This gives the total number of nodes currently there in the network.
lnk_tbl_ This is a link_table which when given a source and a destination, returns a link.

class ATMMinHop: public ATMRotueLogic

This class uses the minimum hop algorithm between all sources and all destinations. At the very first
invokation the algorithm tries to establish paths from every node to every other node i.e. all to all paths.
If a node is added subsequently i.e. after adding the routes are computed, the done is set to 0 and the
routes are established once again.

class ATMMinHopRouteLogicMatcher: pubic Matcher

This class inherits from the matcher clss. This class class identifies the match with the identification
"min-hop". It matches this keyword at the ns_default.tcl file and matches it appropriately.

int ATMMinHop::command(int argc, const char*const* argv)

This matches the command at the user input and invokes the appropriate function. In this case, if it
comes accross a "compute-routes" keyword it invokes compute_routes() function.

The other keyword that it matches is "insert" it inserts the node that is added to the network topology.

int ATMMinHop::establish_route(int src, int dst)

This function creates an all to all shortest paths and returns 0 as the delay for time taken in establishing
the routing tables.

ATMSource (atmsrc.h, atmsrc.cc)

The class ATMSource inherits from the main ATMNode class. ATM Agents are attached to this which
are the actual generators of the traffic.

static class ATMSourceMatcher:public Matcher

This is the matcher class for the ATM source. It simply matches the object atm-source declared by the
tcl input. Upon matching the keyword it returns the object ATMSource.

void ATMSource::handle(Event* x)

This function is supposed to handle the events meant for the ATMSource to handle. If the node for
which the function gets invoked is the destination node as well then the event is handed over to the
appropriate Agent. If the event is the generation of a cell then the next cell is also generated.

ATMSwitch (atmswitch.h, atmswitch.cc)

class ATMSwitchBuffer

This class is used to implement the buffer for the switch. Different switching architectures can be
implemented by making them inherit from the main buffer class. We are not required to store the actual
cells, only the total count of the cells is fine since it serves the purpose, and saves the memory
requirements as well.

Variables

qsize gives the current size of the queue
total_q gives the sum of all the queues
ports This gives the total number of ports.

qlimit_ This is the limit assigned to the queue which is used to compare against in deciding which
packet to discard and which one to let go.

exit_time
The time at which the last cell will leave the queue. The next cell exit time is this time plus
one cell time if the exit time has not yet arrived or the current time. Otherwise it is the current
time plus the cell transmission time.

ATMSwitch

This is the generic (base) class for all ATMSwitches. All the subsequent classes of switches i.e. the
output buffer and shared memory switches inherit from this class after slight variation in the functions.

Variables

buffer_size_ This gives the buffer size of the switch in terms of number of cells.

qlimit This gives the threshold value against which the discard decision is taken or ruled
out.

no_of_cells_lost This gives the total number of cells lost in the buffer of the switch.
no_of_cells_passed This gives the total number of cells passed through the switch buffer.

Functions

ATMSwitch::ATMSwitch()

This is the constructor for the ATMSwitch class. It declares a new buffer of the type ATMSwitchBuffer.
It also initialises the link_int with the name of the switch ns_switch, the buffer-size, and

ATMSwitch::add_link(ATMLink* link)

This function adds a link to the switch. It also updates the buffer size allocated to each port on the
addition of the new link. This also sets the buffer limit which is used in implementing discard decisions.

ATMSwitch::command(ATMLink* link)

This function interprets the user input from the ns_default.tcl file and interprets it and takes appropriate
action. This command function reacts to one of the following commands in the ns_default.tcl files. e.g

$switch discard-algo $discard

On getting the keyword discard-algo, looks up the name in the list of algorithms and sets the appropriate
discard algorithm. The return value of the function is assigned to the discard variable.

$switch buffer-size $size

This line is interpreted so as to set the buffer size. If none of the options are matching, then this function
returns to the command function in the class one step above in object hierarchy.i.e. the command
function of the NsObject::command.

ATMSwitch::handle(Event* x)

The main purpose of this function is to handle the event passed to it as an argument. If the node for
which this function is invoked is the destination and the cell is currently queued up then the event is
passed on to the appropriate ATM adaptation layer. If the Aal Layer informs that the packet is complete
then the packet is passed back to the network.

If the current node is the destination but the cell is not queued then the cell is to be queued with the with
the appropriate dummy port. It is enqueued

If the current node is the destination as well as the source then the packet is returned.

If this is not the destination and the cell is not queued then enque the cell and update the statistics. else
deque the cell and update the statistics.

void ATMSwitch::enque(ATMCell* cell, int port)

This takes in a cell and enques it in the appropriate port. It also updates the queue lengths of the buffer
and the statistics of the switch.

void ATMSwitch::deque(ATMCell* cell, int port)

This takes in a cell and deques it (changes cell->queued_ to 0) from the appropriate port. It also updates
the queue lengths of the buffer and the statistics of the switch.

Types of Switches.

Two types are switches are being implemented in our model of the atm-layer. The output Buffer switch

and the Shared memory switch.

ATMOutputBuffer

The output buffer switch inherits from the main ATMSwitch class. It is just a simple switch but the
buffer limits have been set differently. The traffic from different connections gets queued up in different
buffers at the output port.

ATMSharedBuffer

The shared memory switch also inherits from the main ATMSwitch, but it implements logical queues
which share the same buffer space. When a particular connection is closed its queue vanishes from the
memory of the queue.

This class is used for identifying the switches. It operates on swwing the following sort of commands at
the test-suite.tcl file. The above commands are used in the input file when creating the specifics for the
atmnetwork. This command

set n1 [ns node atm-switch output early] set n2 [ns node atm-switch shared simple]

The set n1 command creates an output buffer switch, which implements early packet discard. On the
other hand the set n2 command sets the node with the at-switch which is shared memory and
implements the simple packet discard algorithm. Upon finding the atm-switch keyword, it matches
whether the type of the switch is there or not, then it returns the particular switch with the specified
packet discard algorithm implemented at the buffer.

void ATMOutputBuffer::set_buffer_limit

The buffer_size is equally divided accross both the atmlinks and the dummy external links.

void ATMOutputBuffer::set_buffer_limit

The buffer size is the queue limit. The buffer limit in the shared memory switch is the size of the buffer
since the buffer is shared by all the connections.

ATMDiscardAlgorithm

The Discard algortihm is implemented in such a way that the user has to write just one function and the
algorithm is implemented. It has one function which is supplied the switch buffer the current cell and the
port to which is supposed to be routed to. It can then decide whether to discard the packet or not. For the
integrity of the switch, the discard algorithm can not change the buffer or the cell. Also it has to be
supplied the port number because the discard algorithm does not need to know how and where to route
the cell.

The simple output and shared buffer switch classes inherit from the DiscardAlgorithm class. These
implement the Simple discard algorithm on the output and shared memory switches.

The early output and shared memory switch classes ineherit from the Discard Algorithm class. These

implement the Early Packet discard algorithm on the Shared memory and output buffer switches.

class DiscardAlgorithm: public NsObject

This class inherits from the NsObject class. This is the generic DiscardAlgorithm class. All the discard
algorithms can be implemented by inheriting from this generic class. The only difference between the
generic DiscardAlgorithm class and those inheriting from it is that the only functions that determine (by
looking at the buffer and the cell) whether the cell is to be discarded or not. which is the check_discard(
const ATMSwitchBuffer* , const ATMCell*, int).

static class ATMOutputDiscardMatcher

This matcher class inherits from the base Matcher class. It is used to match the user input. These are
particularly used to identify the discard algorithm. "output" specifies that it is for output buffer and
"simple" and "early" identify the discard algorithm.

static class ATMSharedDiscardMatcher

This does the same thing as the previous function but for the Shared Memory switch instead of the
Output buffer switch.

int SimpleOutputBuffer::check_discard

This function implements the Simple discard algorithm at the Output Buffer switch. When the individual
queue of a port (connection) is full, it starts discarding the packets of that particular connection. The
function returns a 1 if the packet is supposed to be discarded and a 0 if it is not to be discarded.

int SimpleOutputBuffer::check_discard(const ATMSwitchBuffer* buffer,
 const ATMCell* cell, int port)
{
 if(buffer->qsize_[port] >= buffer->qlimit_)
 return 1;
 return 0;
}

int SimpleSharedBuffer::check_discard

This function implements the Simple discard algorithm at the Shared Memory switch. When the
combined total of the port queues is full. The function returns a 1 if the packet is supposed to be
discarded and a 0 if it is not to be discarded.

int SimpleSharedBuffer::check_discard(const ATMSwitchBuffer* buffer,
 const ATMCell* cell, int port)
{
 if(buffer->total_q_ >= buffer->qlimit_)
 return 1;
 return 0;

}

EarlyOutputBuffer

weight is the percentage of queue to be filled before discarding the UBR cells.

int EarlyOutputBuffer::check_discard

If the percentage weight of the queue is full then the incoming UBR cells are discarded. But if all the
queue is full then all the cells from all the connections are discarded. But the queue is examined at the
specified port given as argument.

int EarlyOutputBuffer::check_discard(const ATMSwitchBuffer* buffer,
 const ATMCell* cell, int port)
{
 if(buffer->qsize_[port] >= buffer->qlimit_)
 return 1;
 if(cell->priority_) //Not UBR
 return 0;
 if(buffer->qsize_[port] >= weight_*buffer->qlimit_)
 return 1;
 return 0;
}

int EarlySharedBuffer::check_discard

If a percentage (weight) of the queue is full then discard the incoming UBR cells. ELse if all the queue
is full then discard all the cells. The difference between this type of discard and that implemented on the
Output Buffer is that in this type of switch the whole buffer is examined rather than a part of the buffer
as in the previous one. This function returns a 0 or a 1 depending on whether the cell is to be discarded
or not.

int EarlySharedBuffer::check_discard(const ATMSwitchBuffer* buffer,
 const ATMCell* cell, int port)
{
 if(buffer->total_q_ >= buffer->qlimit_)
 return 1;
 if(cell->priority_) //Not UBR
 return 0;
 if(buffer->total_q_ >= weight_*buffer->qlimit_)
 return 1;
 return 0;
}

NS Defaults (ns_default.tcl)

The default values for most variables are specified in the ns_default.tcl file. If you have to change any of
the defaults you can change them in this file. However if you do this you will have to recompile the
program. A collection of such configuration parameters that can be modified as above either before a
simulation begins, or dynamically, while the simulation is in progress. If a parameter is not explicitly
set, it defaults to a value stored in a global Tcl array. These variables are stored in objects belonging to
class Var in the static list of the NsObject Class. The following is the list of parameters that can be set in
the program.

TCP Variables

These variables control the behaviour fo the TCP traffic. It controls the window sizes, packet sizes and

various other TCP traffic related aprameters.

set ns_tcp(maxburst) 0
set ns_tcp(maxcwnd) 0
set ns_tcp(window) 20
set ns_tcp(window-init) 1
set ns_tcp(window-option) 1
set ns_tcp(window-constant) 4
set ns_tcp(window-thresh) 0.002
set ns_tcp(overhead) 0
set ns_tcp(ecn) 0
set ns_tcp(packet-size) 1000
set ns_tcp(bug-fix) true
set ns_tcp(tcp-tick) 0.1
set ns_tcpnewreno(changes) 0

and this is how these variables are accessed

TcpAgent::TcpAgent() : Agent(PT_TCP), ds_(0), rtt_active_(0), rtt_seq_(-1)
{
 // read/write links
 link_real("ns_tcp", "window", &wnd_, 0);
 link_real("ns_tcp", "window-init", &wnd_init_, 0);
 link_int("ns_tcp", "window-option", &wnd_option_, 0);
 link_real("ns_tcp", "window-constant", &wnd_const_, 0);
 link_real("ns_tcp", "window-thresh", &wnd_th_, 0);
 link_real("ns_tcp", "overhead", &overhead_, 0);
 link_real("ns_tcp", "tcp-tick", &tcp_tick_, 0);
 link_int("ns_tcp", "ecn", &ecn_, 0);
 link_int("ns_tcp", "packet-size", &size_, 0);
 link_bool("ns_tcp", "bug-fix", &bug_fix_, 0);
 link_int("ns_tcp", "maxburst", &maxburst_, 0);
 link_int("ns_tcp", "maxcwnd", &maxcwnd_, 0);

 // read-only links
 link_int(0, "dupacks", &dupacks_, 1);
 link_int(0, "seqno", &curseq_, 1);
 link_int(0, "ack", &highest_ack_, 1);
 link_real(0, "cwnd", &cwnd_, 1);
 link_real(0, "awnd", &awnd_, 1);
 link_int(0, "ssthresh", &ssthresh_, 1);
 link_int(0, "rtt", &t_rtt_, 1);
 link_int(0, "srtt", &t_srtt_, 1);
 link_int(0, "rttvar", &t_rttvar_, 1);
 link_int(0, "backoff", &t_backoff_, 1);
}

RED parameters

These variables control the behaviour fo the RED (Random Early Detection) Gateways. For a detailed
description of these parameters you should read the following paper Sally Floyd and Van Jacobson "
Random Early Detection Gateways for Congestion Avoidance"
http://www-nrg.ee.lbl.gov/floyd/red.html

set ns_red(bytes) false
set ns_red(thresh) 5
set ns_red(maxthresh) 15
set ns_red(mean_pktsize) 500

set ns_red(q_weight) 0.002
set ns_red(wait) true
set ns_red(linterm) 50
set ns_red(setbit) false
set ns_red(drop-tail) false
set ns_red(doubleq) false
set ns_red(dqthresh) 50
set ns_red(subclasses) 1
set ns_red(thresh1) 5
set ns_red(maxthresh1) 15
set ns_red(mean_pktsize1) 500

and this is how thyey are initialised

REDQueue::REDQueue()
{
 Tcl& tcl = Tcl::instance();

 link_bool("ns_red", "bytes", &edp_.bytes, 0);
 link_real("ns_red", "thresh", &edp_.th_min, 0);
 link_real("ns_red", "maxthresh", &edp_.th_max, 0);
 link_int("ns_red", "mean_pktsize", &edp_.mean_pktsize, 0);
 link_real("ns_red", "q_weight", &edp_.q_w, 0);
 link_bool("ns_red", "wait", &edp_.wait, 0);
 link_real("ns_red", "linterm", &edp_.max_p_inv, 0);
 link_bool("ns_red", "setbit", &edp_.setbit, 0);
 link_bool("ns_red", "drop-tail", &drop_tail_, 0);

 link_bool("ns_red", "doubleq", &doubleq_, 0);
 link_int("ns_red", "dqthresh", &dqthresh_, 0);
}

CBQ based parameters

These variables control the behaviour fo the RED (Random Early Detection) Gateways. For a detailed
description of these parameters you should read the paper by Sally Floyd at
ftp://ftp.ee.lbl.gov/papers/params.ps.Z. The CBQ class uses packet-by-packet and round-robin queueing.

set ns_cbq(algorithm) 0
set ns_cbq(max-pktsize) 1024
set ns_class(priority) 0
set ns_class(depth) 0
set ns_class(allotment) 0.0
set ns_class(maxidle) 4ms
set ns_class(minidle) -0.2ms
set ns_class(extradelay) 0
set ns_class(plot) false
set ns_class(qdisc) red
set ns_class(qdisc) drop-tail

Parameters for various Agents

For different types of agents different parameters can be set. These are assigned to different classes and
stored in the Var list.

set ns_sink(packet-size) 40
set ns_delsink(interval) 100ms
set ns_sacksink(max-sack-blocks) 3

set ns_cbr(interval) 3.75ms
set ns_cbr(random) 0
set ns_cbr(packet-size) 210
set ns_rlm(interval) 3.75ms
set ns_rlm(packet-size) 210

set ns_ivs(S) 1
set ns_ivs(R) 1
set ns_ivs(state) 0
set ns_ivs(rttShift) 0
set ns_ivs(keyShift) 0
set ns_ivs(key) 0
set ns_ivs(maxrtt) 0.0
set ns_ivs(ignoreR) 0

set ns_source(maxpkts) 0
set ns_telnet(interval) 1000ms
set ns_bursty(interval) 0
set ns_bursty(burst-size) 2
set ns_message(packet-size) 40

set ns_facktcp(ss-div4) 1
set ns_facktcp(rampdown) 1

This is how these variables are set in the constructor.

FackTcpAgent::FackTcpAgent() : rampdown_(0), ss_div4_(0), retran_data_(0), fack_
(-1), wintrim_(0), wintrimmult_(.5)
{
 link_int("ns_facktcp", "ss-div4", &ss_div4_, 0);
 link_int("ns_facktcp", "rampdown", &rampdown_, 0);
}

Default values for links

For links of various types these are the default values that are set in via the constructor of the classes.

set ns_link(bandwidth) 1.5Mb
set ns_link(delay) 100ms
set ns_link(queue-limit) 50
set ns_lossy_uniform(loss_prob) 0.00

and this is how they are initiaslised

Link::Link() : busy_(0), neighbor_(0), qnp_(0), qnb_(0), qtrace_(0),
 flowmgr_(0)
{
 Tcl& tcl = Tcl::instance();
 link_bw("ns_link", "bandwidth", &bandwidth_, 0);
 link_time("ns_link", "delay", &delay_, 0);
 link_int("ns_link", "queue-limit", &qlim_, 0);

 link_int(0, "queue-length", &qnp_, 1);
 link_int(0, "queue-size", &qnb_, 1);

 ncs_ = 10;
 cs_ = new classStat[ncs_];

}

Default Values for Switches

set ns_switch(buffer-size) 40
set ns_early_discard(weight) 0.8

Functions

The ns_default.tcl contains several helper functions for the ease of the user for defining several. These
functions rely on the procedure ns defined later and the command functions of every class. These
functions include ns_connect which connects a source and sink agent. together. This is used by the
ns_create_connection procedure.

proc ns_connect { src sink } {
 $src connect [$sink addr] [$sink port]
 $sink connect [$src addr] [$src port]
}

The ns_create_connection procedure takes in the type of source and sinks and the source and
destination nodes and returns the source agent. It creates two agents of the specified type and connects
them using ns_connect procedure.

proc ns_create_connection { srcType srcNode sinkType sinkNode class } {
 set src [ns agent $srcType $srcNode]
 set sink [ns agent $sinkType $sinkNode]
 $src set class $class
 $sink set class $class
 ns_connect $src $sink
 return $src
}

The ns_duplex procedure is used to create two links between two nodes of a certain bandwidth, delay,
and of a certain type.

proc ns_duplex { n1 n2 bw delay type } {
 set link0 [ns link $n1 $n2 $type]
 $link0 set bandwidth $bw
 $link0 set delay $delay
 set link1 [ns link $n2 $n1 $type]
 $link1 set bandwidth $bw
 $link1 set delay $delay
 return "$link0 $link1"
}

This function creates a Reno TCP connection

proc ns_create_reno { tcpSrc tcpDst window start class} {
 set tcp [ns_create_connection tcp-reno $tcpSrc tcp-sink $tcpDst $class]
 $tcp set window $window
 set ftp [$tcp source ftp]
 ns at $start "$ftp start"
 return $tcp
}

This function creates a TCP CBR connection

proc ns_create_cbr { srcNode sinkNode pktSize interval class } {
 set src [ns agent cbr $srcNode]
 set sink [ns agent loss-monitor $sinkNode]
 $src set interval $interval
 $src set packet-size $pktSize
 $src set class $class
 ns_connect $src $sink
 return $src
}

This function Creates a CBQ based connection

proc ns_create_class { parent borrow allot maxIdle minIdle priority depth extraDelay
 global ns_class ns_link
 set class [new class]
 set class1 [ns_class_params $class $parent $borrow $allot $maxIdle \
 $minIdle $priority $depth $extraDelay 0]
 set qdisc [new link $ns_class(qdisc)]
 $class1 qdisc $qdisc
 return $class1
}

Create a class1 connection

proc ns_create_class1 { parent borrow allot maxIdle minIdle priority depth extra
Delay Mbps} {
 global ns_class ns_link
 set class [new class]
 set class1 [ns_class_params $class $parent $borrow $allot $maxIdle \
 $minIdle $priority $depth $extraDelay $Mbps]
 set qdisc [new link $ns_class(qdisc)]
 $class1 qdisc $qdisc
 return $class1
}

Set class parameters

proc ns_class_params { class parent borrow allot maxIdle minIdle priority depth
extraDelay Mbps} {
 $class parent $parent
 $class borrow $borrow
 $class set allotment $allot
 $class set maxidle $maxIdle
 $class set minidle $minIdle
 $class set priority $priority
 $class set depth $depth
 $class set extradelay $extraDelay
 set class1 [ns_class_maxIdle $class $allot $maxIdle $priority $Mbps]
 set class2 [ns_class_minIdle $class $allot $minIdle $Mbps]
 return $class2
}

procedure NS

This procedure is the heart of the input for our simulator. It calls the appropriate command functions
depending on the object.

ns connect $tcpnode $atmnetwork $atmnode

This command is used to connect a tcpnode to the atmnode in the atmnetwork. This is handled by the
class ATMCommand which looks up the three arguments and calls the attach method of the
ATMNetwork.

if { $cmd == "connect" } {
 if { [llength $args] == 3 } {
 connect [lindex $args 0] [lindex $args 1] [lindex $args 2]
 return
 }
 else {
 puts stderr "ns: Syntax ’ns $cmd tcp_node atm_network atm_node’"
 }
}

The node commands handle all types of nodes in the network. This includes routers, TCP nodes,
ATMNetworks, ATMSwitches and ATM Sources.

if { $cmd == "node" }

ns node atm-switch $type $discard-algo

For creating ATM Switches first a new node with the specified type of the switch is created. Then a new
object of the type of the discard algorithm is created and attached to the switch. The new command is
actually calling the command function of the class CreateCommand. The node is not inserted in the
main list of nodes nor in the routing logic of the TCP. This keeps the routing logic of ATM independent
of the TCP above and vice versa.

 if { [llength $args] == 3 } {
 if { [lindex $args 0] == "atm-switch" } {
 set type [lindex $args 1]
 set node [new atm-switch $type]
 set algo [new $type [lindex $args 2]]
 $node discard-algo $algo
 return $node
 }
 }

ns node atm-network

ns node atm-network $route-algo

An ATM Network is just a standard node with its own routing logic. If the routing algorithm is not
specified min-hop is used. Otherwise a new object of type route-logic is created and attached to the
node. The network is inserted in the TCP routing logic and is visible as only a single node.

 if { [llength $args] == 2 } {
 if { [lindex $args 0] == "atm-network" } {
 set node [new atm-network]
 set routelogic [new [lindex $args 1]]
 $node route $routelogic
 }
 }

 if { [llength $args] == 1 } {
 if { [lindex $args 0] == "atm-network" } {
 set node [new atm-network]
 set routelogic [new min-hop]
 $node route $routelogic
 }
 }

ns node atm-source

This creates an ATM Source. ATM agents can then be attached to this node.

 if { [lindex $args 0] == "atm-source" } {
 set node [new atm-source]
 return $node
 }

ns node

This creates a TCP Node which can be either a router or a Tcp node. It is inserted in the main routing
logic of the network.

 if { [llength $args] == 0 } {
 set node [new node]
 }
 if ![info exists ns_compat(route-logic)] {
 set ns_compat(route-logic) [new route-logic]
 }
 $ns_compat(route-logic) insert $node
 return $node

ns link $n1 $n2 $type

This command creates a link between the two nodes of the specified type. The type matches the
corresponding Matcher class and the object created is of that type. If it is not an atm link then it also has
to be inserted in the ns_compat.

 if { $cmd == "link" } {
 if { [llength $args] == 3 } {
 set src [lindex $args 0]
 set dst [lindex $args 1]
 set type [lindex $args 2]
 set L [new link $type]
 $L install $src $dst
 if { $type != "atm" } {
 set ns_compat(link:$src:$dst) $L
 }
 return $L
 }

ns link $n1 $n2

This command can be used to return the link that is connected with the two nodes. It calls the command
function of the Link class.

 if { [llength $args] == 2 } {

 set src [lindex $args 0]
 set dst [lindex $args 1]
 return $ns_compat(link:$src:$dst)
 }

ns link

This command returns a complete array of all the links. This is useful for setting some parameters of all
the links of the network.

 if { $args == "" } {
 set L ""
 foreach v [array names ns_compat] {
 if [string match link:* $v] {
 lappend L $ns_compat($v)
 }
 }
 return $L
 }

ns agent $type $node

This command can be used to make agents of any types. They are attached to the nodes and returned.

 if { $cmd == "agent" } {
 if { [llength $args] == 2 } {
 set type [lindex $args 0]
 set node [lindex $args 1]
 set agent [new agent $type]
 $agent node $node
 return $agent
 }
 }

ns trace

This creates a Trace object and returns it. This can be attached to any node.

 if { $cmd == "trace" } {
 set trace [new trace]
 return $trace
 }

ns at "valid string"

This can be used to execute any valid Tcl command at the specified time. It calls the ATCommand class
which handles it.

 if { $cmd == "at" } {
 eval ns-at $args
 return
 }

ns now

This command calls the command function of the NowCommand class. and returns the current time. It is
useful for dumping statistics at various time intervals.

 if { $cmd == "now" } {
 return [ns-now]
 }

ns random

ns random $seed

This generates a random number.

 if { $cmd == "random" } {
 return [eval ns-random $args]
 }

ns run

This actually runs the simulator. It calls the command function of the RunCommand. It first computes
the route logic in the network.

 if { $cmd == "run" } {
 $ns_compat(route-logic) compute-routes
 ns-run
 return
 }

