
The NS (v2) Simulator Workshop

brought to you by

Kevin Fall
Lawrence Berkeley National Laboratory

kfall@ee.lbl.gov

http://www-nrg.ee.lbl.gov/kfall

AND

Kannan Varadhan
USC/ISI

kannan@catarina.usc.edu

http://www.isi.edu/~kannan

September 18, 1997

Audience and Outline

� Audience

{ network researchers

{ educators

{ developers

� Topics for today

{ VINT project goals and status (Sally)

{ architecture plus some history (Steven)

{ overview of major components (Kevin)

{ project/code status (Kevin)

{ details of major components (Kevin)

{ C++/OTcl linkage and simulation debugging (Kannan)

{ topology generation and session-level support (Kannan)

{ multicast and reliable multicast (Kannan)

{ a complex link: CBQ (Kevin)

{ discussion and futures (Everyone)

NSv2 Workshop kfall@ee.lbl.gov Slide 2

NSv2 Architecture

� Object-oriented structure

{ evolution from NSv1 (C++ with regular Tcl)

{ objects implemented in C++ and \OTcl"

{ OTcl: object-oriented extension to Tcl

(from David Wetherall at MIT/LCS for VuSystem)

� Control/\Data" separation

{ control operations in OTcl

{ data pass through C++ objects (for speed)

� Modular approach

{ �ne-grain object decomposition

{ positives: composible, re-usable

{ negatives: must \plumb" in OTcl,

developer must be comfortable with both environments,

tools

NSv2 Workshop kfall@ee.lbl.gov Slide 3

Development Status

� simulator code basis for VINT Project

� 5ish people actively contributing to the code base

� other contributions from Xerox PARC, USC/ISI, UCB, LBNL

� Some approximate numbers:

{ 27K lines of C++ code

{ 12K lines of OTcl support code

{ 18K lines of test suites, examples

{ 5K lines of documentation!

� See main VINT and NS-2 web pages at:

http://netweb.usc.edu/vint

http://www-mash.cs.berkeley.edu/ns/ns.html

� Open mailing lists:

{ ns-users@mash.cs.berkeley.edu

{ ns-announce@mash.cs.berkeley.edu

� To subscribe:

{ majordomo@mash.cs.berkeley.edu

NSv2 Workshop kfall@ee.lbl.gov Slide 4

Directory Structure

� common directory shared between MASH (UCB) and VINT projects

Tcl

conf

...

WORK

commonvint

doc
ns-2 nam

lib test ex

bintcl

www

NSv2 Workshop kfall@ee.lbl.gov Slide 5

Class Hierarchy

� Top-level classes implement simple abstractions:

NewReno

Replicator

AddrClassifier

Agent/Message/Prober

McastClassifier
Queue

Classifier

Agent/Message

Delay

Agent/TCP

TclObject

Connector

Shared with MASH Project:

NsObject

Trace/Drop
Trace/Hop

Trace

RED

Agent

Trace/Enq

...

...

Trace/Deq

Reno

DropTail

NSv2 Workshop kfall@ee.lbl.gov Slide 6

Example: a node

� Node: a collection of agents and classi�ers

� Agents: usually protocol endpoints and related objects

� Classi�ers: packet demultiplexers

Agent

Port
Classifier

Local Addr

Link Link

Classifier
Addr

Node

Node.entry

Agent

Agent

� Note that the node \routes" to itself or to downstream links

NSv2 Workshop kfall@ee.lbl.gov Slide 7

Example: a link

� keeps track of \from" and \to" Node objects

� generally encapsulates a queue, delay and possibly ttl checker

Queue

split classes

(OTcl class)Link

Delay

� Many more complex objects built from this base

NSv2 Workshop kfall@ee.lbl.gov Slide 8

Example: routers

� routers (unicast and multicast) by \plumbing"

Node

...

...

Node

Node.entry

Link

Link

Link

� multicast router adds additional classi�ers and replicators

� Replicators: demuxers with multiple fanout

Addr

Replicator

Replicator
Addr

Classifier

Classifier

unicast?

Mcast
Classifier

MulticastNode

multicast?

......

(S1, G1)

(S2, G2)

(S3, G3)

Link

Link

Node.entry

Link

NSv2 Workshop kfall@ee.lbl.gov Slide 9

OTcl Basics

� See the page at ftp://ftp.tns.lcs.mit.edu/pub/otcl/

� object oriented extension to tcl

� classes are objects with support for inheritance

� Analogs to C++:

{ C++ has single class decl)

OTcl attaches methods to object or class

{ C++ constructor/destructor) OTcl init/destroy methods

{ this) $self

{ OTcl methods always \virtual"

{ C++ shadowed methods called explicitly with scope operator

) OTcl methods combined implicitly with $self next

{ C++ static variables) OTcl class variables

{ (multiple inheritance is supported)

NSv2 Workshop kfall@ee.lbl.gov Slide 10

OTcl Basics (contd)

� use instvar and instproc to de�ne/access member functions and

variables

� Example:

Class Counter

Counter instproc init fg f
$self instvar cnt

set cnt 0

g
Counter instproc bump fg f

$self instvar cnt

incr cnt

g
Counter instproc val fg f

$self instvar cnt

return $cnt

g

Counter c

c val ! 0

c bump

c val ! 1

NSv2 Workshop kfall@ee.lbl.gov Slide 11

C++/OTcl Split Objects

� Split objects: implement methods in either language

� new and delete

set c [new Counter]

$c val -> 0

$c bump

$c val -> 1

delete $c

� De�ne instance variables in either C++ or OTcl:

Counter::Counter()

f

bind("cnt ",

&value);

value = 10;

...

g

vs. $self set cnt 10

bind() simply uses Tcl TraceVar

NSv2 Workshop kfall@ee.lbl.gov Slide 12

Example: a simple simulation

� A small but complete simulation script:

{ set up 4-node topology and one bulk-data transfer TCP

{ arrange to trace the queue on the r1-k1 link

{ place trace output in the �le simp.out.tr

� # Create a simple four node topology:

s1

\

8Mb,5ms \ 0.8Mb,50ms

r1 --------- k1

8Mb,5ms /

/

s2

set stoptime 10.0

set ns [new Simulator]

set node_(s1) [$ns node]

set node_(s2) [$ns node]

set node_(r1) [$ns node]

set node_(k1) [$ns node]

$ns duplex-link $node_(s1) $node_(r1) 8Mb 5ms DropTail

$ns duplex-link $node_(s2) $node_(r1) 8Mb 5ms DropTail

$ns duplex-link $node_(r1) $node_(k1) 800Kb 50ms DropTail

$ns queue-limit $node_(r1) $node_(k1) 6

$ns queue-limit $node_(k1) $node_(r1) 6

set tcp1 [$ns create-connection TCP $node_(s1) TCPSink $node_(k1) 0]

$tcp1 set window_ 50

$tcp1 set packetSize_ 1500

Set up FTP source

set ftp1 [$tcp1 attach-source FTP]

set tf [open simp.out.tr w]

$ns trace-queue $node_(r1) $node_(k1) $tf

$ns at 0.0 "$ftp1 start"

$ns at $stoptime "close $tf; puts \"simulation complete\"; $ns halt"

$ns run

NSv2 Workshop kfall@ee.lbl.gov Slide 13

Example: a simple simulation (cont)

� The trace �le produced looks like this:

+ 0.0065 2 3 tcp 1500 ------ 0 0.0 3.0 0 0

- 0.0065 2 3 tcp 1500 ------ 0 0.0 3.0 0 0

+ 0.23344 2 3 tcp 1500 ------ 0 0.0 3.0 1 2

- 0.23344 2 3 tcp 1500 ------ 0 0.0 3.0 1 2

+ 0.23494 2 3 tcp 1500 ------ 0 0.0 3.0 2 3

- 0.24844 2 3 tcp 1500 ------ 0 0.0 3.0 2 3

+ 0.46038 2 3 tcp 1500 ------ 0 0.0 3.0 3 6

- 0.46038 2 3 tcp 1500 ------ 0 0.0 3.0 3 6

+ 0.46188 2 3 tcp 1500 ------ 0 0.0 3.0 4 7

+ 0.47538 2 3 tcp 1500 ------ 0 0.0 3.0 5 8

...

+ 0.98926 2 3 tcp 1500 ------ 0 0.0 3.0 25 40

+ 0.99076 2 3 tcp 1500 ------ 0 0.0 3.0 26 41

d 0.99076 2 3 tcp 1500 ------ 0 0.0 3.0 26 41

- 1.00426 2 3 tcp 1500 ------ 0 0.0 3.0 21 36

+ 1.00426 2 3 tcp 1500 ------ 0 0.0 3.0 27 42

+ 1.00576 2 3 tcp 1500 ------ 0 0.0 3.0 28 43

d 1.00576 2 3 tcp 1500 ------ 0 0.0 3.0 28 43

- 1.01926 2 3 tcp 1500 ------ 0 0.0 3.0 22 37

+ 1.01926 2 3 tcp 1500 ------ 0 0.0 3.0 29 44

+ 1.02076 2 3 tcp 1500 ------ 0 0.0 3.0 30 45

d 1.02076 2 3 tcp 1500 ------ 0 0.0 3.0 30 45

- 1.03426 2 3 tcp 1500 ------ 0 0.0 3.0 23 38

- 1.04926 2 3 tcp 1500 ------ 0 0.0 3.0 24 39

- 1.06426 2 3 tcp 1500 ------ 0 0.0 3.0 25 40

...

NSv2 Workshop kfall@ee.lbl.gov Slide 14

The Simulator

� Simulator API is a set of methods belonging to a simulator

object:

� Create a simulator with:

set ns [new Simulator]

� What this does:

{ initialize the packet format (calls create packetformat)

{ create a scheduler (defaults to a simple linked-list scheduler)

� Scheduler:

{ handles time, timers and events (packets),

deferred executions (\ATs")

{ Scheduler/List - linked-list scheduler

{ Scheduler/Heap - heap-based scheduler

{ Scheduler/Calendar - calendar-queue scheduler

{ see Reeves, "Complexity Analyses of Event Set Algorithms",

The Computer Journal, 27(1), 1984

NSv2 Workshop kfall@ee.lbl.gov Slide 15

Using the scheduler

� Scheduler API is through Simulator object:

Simulator instproc now ;# return scheduler's notion of current time
Simulator instproc at args ;# schedule execution of code at speci-
�ed time
Simulator instproc run args ;# start scheduler
Simulator instproc halt ;# stop (pause) the scheduler
Simulator instproc create-trace type files src dst ;# cre-
ate trace object
Simulator instproc create_packetformat ;# set up the simula-
tor's packet format

� Example:

MySim instproc begin {} {

...

set ns_ [new Simulator]

$ns_ use-scheduler Heap

$ns_ at 300.5 "$self complete_sim"

...

}

MySim instproc complete_sim {} {

...

}

NSv2 Workshop kfall@ee.lbl.gov Slide 16

Simulator Timing

� each object has a generic receive method

NsObject::recv(Packet*, Handler* h = 0)

� most objects have single neighbor Connector::target

� cut-through transfers; send packet directly to neighbor without

involving scheduler

Connector::send(Packet* p) f target ->recv(p); g

� barrier:

{ any point that advances time into future

(i.e., delay element)

{ need inter-object \protocol" to decouple timing

{ barrier takes non-null Handler

{ schedule delay and invoke handler on completion

{ example: queue/delay objects (later)

NSv2 Workshop kfall@ee.lbl.gov Slide 17

Packets

� packets are events (may be scheduled to \arrive")

� contain header section and (sometimes) data

� header section is a cascade of all in-use headers

� all packets contain a common header:

{ packet size - used to compute transmission time

{ timestamp, type, uid, interface label

(for debugging, and multicast routing)

� new protocol agents may need to de�ne new headers

NSv2 Workshop kfall@ee.lbl.gov Slide 18

Packet Header Format

hdrlen_

ip header body

tcp header body

rtp header body

trace header body

next_
Packet

at compile time

at compile time

size determined
at compile time

size determined
at compile time

size determined

size determined

points to next packet in either
free list or in a PacketQueue

bits()

accessdata() packet data

Size determined
at simulator config

time, stored in hdrlen_

Figure 1: A Packet Object

� header contents are constructed at simulator initialization time

� performed by create packetformat

NSv2 Workshop kfall@ee.lbl.gov Slide 19

Connectors

� Connector: simple in/out topology object with \drop target"

/*

* An NsObject with only a single neighbor.

*/

class Connector : public NsObject {

public:

Connector();

inline NsObject* target() { return target_; }

virtual void drop(Packet* p);

protected:

int command(int argc, const char*const* argv);

void recv(Packet*, Handler* callback = 0);

inline void send(Packet* p, Handler* h) { target_->recv(p, h); }

NsObject* target_;

NsObject* drop_; // drop target for this connector

};

� if drop target unde�ned, dropped packets are freed

NSv2 Workshop kfall@ee.lbl.gov Slide 20

Error Models

� Error Model: a (simple) parameterized lossy connector

(can be used as a base class for other loss models)

� drops packet or sets \error" bit (in common header)

� error units: packets, bits, time

Usage:

create a loss_module and set its packet error rate to 1 percent

set loss_module [new ErrorModel]

$loss_module set rate_ 0.01

optional: set the unit and random variable

$em unit pkt # error unit: packets (the default)

$em ranvar [new RandomVariable/Uniform]

set target for dropped packets

$loss_module drop-target [$ns_ set nullAgent_]

� if drop target unde�ned, dropped packets are freed

NSv2 Workshop kfall@ee.lbl.gov Slide 21

Agents

� Agents: usually a protocol endpoint/entity (but may also be

used for implementing routing protocols)

� Where they �t in:

Agent

Port
Classifier

Local Addr

Link Link

Classifier
Addr

Node

Node.entry

Agent

Agent

� What they provide:

{ a local and destination address (like an IP-layer sender)

{ functions for helping to generate/�ll-in in packet �elds

NSv2 Workshop kfall@ee.lbl.gov Slide 22

Creating a new Agent

� The Agent class:

class Agent : public Connector {

public:

Agent(int pktType);

virtual ~Agent();

virtual void timeout(int tno);

protected:

int command(int argc, const char*const* argv);

void recv(Packet*, Handler*);

...

� basic tasks to create a new agent:

1. decide its inheritance structure

2. create the class, recv, and timeout functions (if needed)

3. de�ne OTcl linkage functions (Kannan will explain how later)

4. write the necessary OTcl code to access your agent

� hardest part may be understanding the OTcl/C++ interaction

(fortunately, much of this is shielded from you if you so choose)

NSv2 Workshop kfall@ee.lbl.gov Slide 23

Example: the Message Agent

� provides a very simple place to store a message

� Packet header (from message.h):

struct hdr_msg {

char msg_[64];

/* per-field member functions */

char* msg() { return (msg_); }

int maxmsg() { return (sizeof(msg_)); }

};

� OTcl linkage (for class creation, from message.cc):

static class MessageHeaderClass : public PacketHeaderClass {

public:

MessageHeaderClass() :

PacketHeaderClass("PacketHeader/Message",

sizeof(hdr_msg)) {}

} class_msghdr;

NSv2 Workshop kfall@ee.lbl.gov Slide 24

Example: the Message Agent (cont)

� The class de�nition, constructor and variable linkage:

static class MessageClass : public TclClass {

public:

MessageClass() : TclClass("Agent/Message") {}

TclObject* create(int, const char*const*) {

return (new MessageAgent());

}

} class_message;

class MessageAgent : public Agent {

public:

MessageAgent();

int command(int argc, const char*const* argv);

void recv(Packet*, Handler*);

protected:

int off_msg_;

};

MessageAgent::MessageAgent() : Agent(PT_MESSAGE)

{

bind("packetSize_", &size_);

bind("off_msg_", &off_msg_);

}

NSv2 Workshop kfall@ee.lbl.gov Slide 25

Example: the Message Agent (cont)

� Main functions:

void MessageAgent::recv(Packet* pkt, Handler*)

{

hdr_msg* mh = (hdr_msg*)pkt->access(off_msg_);

... process packet ...

}

int MessageAgent::command(int argc, const char*const* argv)

{

Tcl& tcl = Tcl::instance(); // call into interp

if (argc == 3) { // $obj send msgtext

if (strcmp(argv[1], "send") == 0) {

Packet* pkt = allocpkt();

hdr_msg* mh = (hdr_msg*)pkt->access(off_msg_);

const char* s = argv[2];

int n = strlen(s);

if (n >= mh->maxmsg()) {

tcl.result("message too big");

Packet::free(pkt);

return (TCL_ERROR);

}

strcpy(mh->msg(), s);

send(pkt, 0);

return (TCL_OK);

}

}

return (Agent::command(argc, argv)); // for inheritance

}

NSv2 Workshop kfall@ee.lbl.gov Slide 26

TCP Agents

� ns has several variants of TCP available:

{ Agent/TCP - a \tahoe" TCP sender

{ Agent/TCP/Reno - a \Reno" TCP sender

{ Agent/TCP/NewReno - Reno with a modi�cation

{ Agent/TCP/Sack1 - TCP with selective repeat (follows RFC2018)

{ Agent/TCP/Vegas - TCP Vegas

{ Agent/TCP/Fack - Reno TCP with \forward acknowledge-

ment"

� The one-way TCP receiving agents currently supported are:

{ Agent/TCPSink - TCP sink with one ACK per packet

{ Agent/TCPSink/DelAck - TCP sink with con�gurable delay

per ACK

{ Agent/TCPSink/Sack1 - selective ACK sink (follows RFC2018)

{ Agent/TCPSink/Sack1/DelAck - Sack1 with DelAck

� The two-way experimental sender currently supports only a Reno

form of TCP:

{ Agent/TCP/FullTcp

NSv2 Workshop kfall@ee.lbl.gov Slide 27

Base TCP Agents

� TCP (Tahoe), TCP/Reno, and TCP/NewReno

� Common features:

{ computations all in packet units w/con�gurable packet size

{ fast retransmit

{ slow-start and congestion avoidance

{ dynamic RTT estimation and RTX timeout assignment

{ simulated (constant) receiver's advertised window

� Tahoe TCP:

{ perform slow-start on any loss (RTO or fast retransmit)

{ no fast recovery

� Reno TCP:

{ fast recovery: inate cwnd by dup ack count until new ACK

{ slow-start on RTO

{ on fast retransmit:

cwnd curwin=2 , ssthresh cwnd

� \Newreno" TCP:

{ modest modi�cation to Reno TCP

{ only exit fast recovery after ACK for highest segment arrives

{ helps reduce \stalling" due to multiple packet drops in a

window
NSv2 Workshop kfall@ee.lbl.gov Slide 28

Other TCP Agents

� TCP/Sack, TCP/Fack, and TCP/Vegas

� Selective ACK TCP:

{ SACK simulation based on RFC2018

{ ACKs carry extra information indicating received segments

{ requires SACK-aware sink

{ sender avoids sending redundant info

{ default to 3 \SACK blocks" (for using timestamps, see RFC2018)

� block contains start/end sequence numbers

� block containing most recently received segment always

present

{ regular ACK number still gives �nal say

� Fack TCP:

{ \forward ACK" TCP (experimental, see SIGCOMM '96)

{ use SACK info for estimate of packets in the network

{ overdamping algorithm (to limit slow-start overshoot)

{ rampdown algorithm (for transmission smoothing)

� Vegas TCP:

{ contributed code from Ted Kuo (NC State Univ)

{ not directly supported at this time

NSv2 Workshop kfall@ee.lbl.gov Slide 29

TCP Agent Parameters

� Common con�guration parameters and defaults for TCP agents:

Agent/TCP set window_ 20 ;# max bound on window size
Agent/TCP set windowInit_ 1 ;# initial/reset value of cwnd
Agent/TCP set windowOption_ 1 ;# cong avoid algorithm (1: standard)
Agent/TCP set windowConstant_ 4 ;# used only when windowOption != 1
Agent/TCP set windowThresh_ 0.002 ;# used in computing averaged window
Agent/TCP set overhead_ 0 ;# !=0 adds random time between sends
Agent/TCP set ecn_ 0 ;# TCP should react to ecn bit
Agent/TCP set packetSize_ 1000 ;# packet size used by sender (bytes)
Agent/TCP set bugFix_ true ;# see documentation
Agent/TCP set slow_start_restart_ true ;# see documentation
Agent/TCP set tcpTick_ 0.1 ;# timer granularity in sec (.1 is NONST
ANDARD)
Agent/TCP set maxrto_ 64 ;# bound on RTO (seconds)
Agent/TCP set dupacks_ 0 ;# duplicate ACK counter
Agent/TCP set ack_ 0 ;# highest ACK received
Agent/TCP set cwnd_ 0 ;# congestion window (packets)
Agent/TCP set awnd_ 0 ;# averaged cwnd (experimental)
Agent/TCP set ssthresh_ 0 ;# slow-stat threshold (packets)
Agent/TCP set rtt_ 0 ;# rtt sample
Agent/TCP set srtt_ 0 ;# smoothed (averaged) rtt
Agent/TCP set rttvar_ 0 ;# mean deviation of rtt samples
Agent/TCP set backoff_ 0 ;# current RTO backo� factor
Agent/TCP set maxseq_ 0 ;# max (packet) seq number sent

NSv2 Workshop kfall@ee.lbl.gov Slide 30

TCP Sink Agents

� Sinks for one-way TCP senders

� Types

{ standard sinks, delayed-ACK sinks, SACK sinks

� Standard sinks:

{ generate one ACK per packet received

{ ACK number overloaded in \sequence number" packet �eld

� Delayed-ACK sinks:

{ same as standard, but with variable delay added between

ACKs

{ time to delay ACKs speci�ed in seconds

� SACK sinks:

{ generates additional information for SACK capable sender

{ con�gurable maxSackBlocks parameter

NSv2 Workshop kfall@ee.lbl.gov Slide 31

Two-Way TCP (\FullTCP")

� most TCP objects are one-way (and require a source/sink pair)

� real TCP can be bi-directional

� simultaneous two-way data transfer alters TCP dynamics con-

siderably

� (new{ still undergoing debugging)

� the TCP/FullTcp agent:

{ follows closely to \Reno" TCP implementation in 4.4 BSD

{ byte-oriented transfers

{ two-way data supported

{ most of the connection establishment/teardown

{ symmetric: only one agent type used for both sides

NSv2 Workshop kfall@ee.lbl.gov Slide 32

FullTCP Parameters

� Parameters and defaults:

Agent/TCP/FullTcp set segsperack_ 1 ;# segs received before generating ACK
Agent/TCP/FullTcp set segsize_ 536 ;# segment size (MSS size for bulk xfers)
Agent/TCP/FullTcp set tcprexmtthresh_ 3 ;# dupACKs thresh to trigger fast rexmt
Agent/TCP/FullTcp set iss_ 0 ;# initial send sequence number
Agent/TCP/FullTcp set nodelay_ false ;# disable sender-side Nagle algorithm
Agent/TCP/FullTcp set data_on_syn_ false ;# send data on initial SYN?
Agent/TCP/FullTcp set dupseg_fix_ true ;# avoid fast rxt due to dup segs+acks
Agent/TCP/FullTcp set dupack_reset_ false ;# reset dupACK ctr on !0 len data seg
s containing dup ACKs
Agent/TCP/FullTcp set interval_ 0.1 ;# delayed ACK interval

NSv2 Workshop kfall@ee.lbl.gov Slide 33

Tra�c Sources

� Sources (\applications") used to drive agents

� currently used only by TCP

� Types:

{ Telnet - simulates characters typed by a user

{ FTP - bulk data transfer

� OTcl Interface:

$src start ;# start sending packets

$src stop ;# stop sending packets

$src attach-agent ;# asso-

ciate agent with source

$ftpsrc produce npkts ;# send npkts num-

ber of packets

$ftpsrc producemore npkts ;# send npkts more packets

� API is still under some development

� sources only used by TCP at this time

NSv2 Workshop kfall@ee.lbl.gov Slide 34

Telnet Tra�c Source

� may specify interval

� if zero, picks randomly among 10000 measured interarrivals

(TCPLIB)

� if nonzero, uses scaled exponential for interarrivals

� packet size constant (but available via bind call)

NSv2 Workshop kfall@ee.lbl.gov Slide 35

CBR and UDP Agents

� CBR Agents:

{ stands for \constant bit rate"

(not really used only this way)

{ non-connection-oriented sending agent

{ sends packets at periodic interval or quasi-periodically

{ constant-size packets

� UDP Agents:

{ very similar to CBR agents

{ uses TrafficGenerator class for packet sizes/times

NSv2 Workshop kfall@ee.lbl.gov Slide 36

RTP and RTCP Agents

� RTP - \Real-time" (transport) protocol (RFC 1889)

{ implemented as Agent/CBR/RTP object

{ special \RTP" header (contains seq number and srcID)

{ sends data periodically similar to CBR sources

{ resets faster when moving from high to low rate

� RTCP - control protocol for RTP

{ implemented as Session/RTP object

{ sends at rate based on number of other senders

{ reports known sources and stats

NSv2 Workshop kfall@ee.lbl.gov Slide 37

Other Simple Agents

� the LossMonitor agent:

{ monitors arrivals of packets

{ looks for sequence number holes

{ provides counters for:

� nlost - number of holes in number space

� npkts - packet arrivals

� bytes - byte arrivals

� lastPktTime - time of last arrival

� expected - next seq number expected

� the Message agent:

{ very simple agent

{ allows for including text \messages" in packets

{ currently limited to at most 64 byte (short) messages

NSv2 Workshop kfall@ee.lbl.gov Slide 38

Tap Agents and the \Real World"

� allows the simulator to interact with a real network

(currently experimental)

� Tap Agents:

{ for now uses 1600 byte bu�er as \header" (ie. ether frame +

slop)

{ bi-directional agent between simulation and network

{ uses abstract \network" object

{ receives one packet per event (handled through Tcl I/O)

� the Scheduler/RealTime class

{ special version of (currently List-based) scheduler

{ ties simulated time to real-time

{ for now, punts if simulation gets far behind

{ (can still do interesting things!)

NSv2 Workshop kfall@ee.lbl.gov Slide 39

Network Object

� abstraction of a (real-world) network

� base class for speci�c network types (e.g. IP network)

� used by other tools in Katz/McCanne/Brewer's MASH project

(see http://www-mash.cs.berkeley.edu/mash/index.html)

� Network class:

{ requires socket system API (UNIX or WinSock)

{ supports a basic send/recv interface

{ separate send/recv \channels" (i.e. sockets)

{ non-blocking optional

{ framework supports multicast, addr/iface selection, etc

� IP Network (Network/IP class)

{ multicast group membership

{ loopback on/o� control

{ implements multicast and unicast controls for IP networks

NSv2 Workshop kfall@ee.lbl.gov Slide 40

Tra�c Generator

� generate tra�c according to distributions or traces

� generally used for CBR/UDP agents

� Exponential

{ exponentially distributed on/o� times

{ parameters: ontime, o�time, rate, packet size

{ what these mean:

� burst for expo time with mean ontime

� be silent for expo time with mean o�time

� while bursting, send at rate rate

� use appropriate inter-departure time given rate/size

� Pareto

{ pareto distributed on/o� times

{ (many aggregated together can be LRD)

{ parameters: ontime, o�time, rate, shape, packet size

{ what these mean:

� like expo, except pareto using shape parameter

NSv2 Workshop kfall@ee.lbl.gov Slide 41

Trace-Based Tra�c Generator

� generate tra�c according to trace �le

� two classes: Tracefile and Traffic/Trace

� trace �le uses small binary format:

{ �rst 32-bit �eld: inter-packet time (microsecs)

{ second 32-bit �eld: packet size (bytes)

NSv2 Workshop kfall@ee.lbl.gov Slide 42

Queue Management and Packet Scheduling

� bu�er management: how to hold and toss (mark) packets

� packet scheduling: what packets get to depart when

� Bu�er management:

{ Drop-tail (FIFO)

{ Random Early Detection (RED)

� Packet scheduling:

{ FIFO

{ CBQ (includes priority + round-robin)

{ Round-robin (DRR)

{ Variants of FQ (WFQ, SFQ)

NSv2 Workshop kfall@ee.lbl.gov Slide 43

Queue Handlers

� Dequeued packets are often sent downstream to delays

� delays (usually) cause two actions:

1. the packet is scheduled to arrive downstream at time t + d

2. the queue becomes unblocked at time t

3. t is transmit time, d is prop delay time

� so, delays represent a commonly-occurring scheduling barrier

� Queue parameters:

Queue set limit_ 50 ;# max packet count in queue
Queue set blocked_ false ;# queue starts o� blocked
Queue set unblock_on_resume_ true ;# queue is unblocked af-
ter resume

� control of blocking can be useful for queue banks (e.g. CBQ)

NSv2 Workshop kfall@ee.lbl.gov Slide 44

Drop Tail and RED Queues

� Drop-Tail Queues (Queue/DropTail class)

{ simple FIFO, drop-tail queues

{ drop from tail when occupancy reaches qlim

� RED (Random Early Detection) Queues (Queue/RED class)

{ active bu�er management technique

{ two thresholds: minth and maxth

{ also a maximum probability maxprob

{ compute average queue occupancy over time

{ if average exceeds maxth (or qlim) drop a packet

{ if average is under minth, allow packet to enter queue

{ between, scale drop probability linearly on [0;maxprob]

NSv2 Workshop kfall@ee.lbl.gov Slide 45

RED Queue Parameters

� bytes do computations in bytes instead of packets

(requires assignment of a mean packet size estimate)

� thresh - min thresh

� maxthresh - max thresh

� mean pktsize - used for computing estimated link utilizations

during idle periods

� q weight - weight given to instantaneous queue occupancy for

EWMA

� wait - RED should force a wait between drops

� linterm - reciprocal of maxprob

� setbit - mark instead of drop

� drop-tail - drop new pkt instead of random one

NSv2 Workshop kfall@ee.lbl.gov Slide 46

Trace and Monitoring Support

� Two main items: traces and monitors

� Traces - write an entry for some event

(often packet arrivals/departures/drops)

{ Trace/Enque - a packet arrival (usually at a queue)

{ Trace/Deque - a packet departure (usually at a queue)

{ Trace/Drop - packet drop (packet delivered to drop-target)

� Monitors - keep statistics about arrivals/departures/drops (and

ows)

{ SnoopQueue/Out - on output, collect a time/size sample

(pass pac ket on)

{ SnoopQueue/Drop - on drop, collect a time/size sample

(pass pack et on)

{ SnoopQueue/EDrop - on an "early" drop, collect a time/size

sampl e (pass packet on)

{ QueueMonitor - receive and aggregate collected samples

from snoo pers

{ QueueMonitor/ED - queue-monitor capable of distinguish-

ing between \early" and standard packet drops

{ QueueMonitor/ED/Flowmon - per-ow statistics monitor

(manager)

{ QueueMonitor/ED/Flow - per-ow statistics container

NSv2 Workshop kfall@ee.lbl.gov Slide 47

Trace File Format

� File format for traces generally of this form:

+ 1.45176 2 3 tcp 1000 ---- 1 256 769 27 48

+ 1.45276 2 3 tcp 1000 ---- 1 256 769 28 49

- 1.46176 2 3 tcp 1000 ---- 1 256 769 22 43

+ 1.46176 2 3 tcp 1000 ---- 1 256 769 29 50

+ 1.46276 2 3 tcp 1000 ---- 1 256 769 30 51

d 1.46276 2 3 tcp 1000 ---- 1 256 769 30 51

- 1.47176 2 3 tcp 1000 ---- 1 256 769 23 44

+ 1.47176 2 3 tcp 1000 ---- 0 0 768 3 52

+ 1.47276 2 3 tcp 1000 ---- 0 0 768 4 53

d 1.47276 2 3 tcp 1000 ---- 0 0 768 4 53

� Fields: arrival/departure/drop, time, trace link endpoints, packet

type, size, ags, ow ID, src addr, dst addr, sequence number,

uid

� Many of these �elds are from the common packet header:

struct hdr_cmn {

double ts_; // timestamp: for q-delay measurement

int ptype_; // packet type (see above)

int uid_; // unique id

int size_; // simulated packet size

int iface_; // receiving interface (label)

static int offset_; // offset for this header

int& offset() { return offset_; }

/* per-field member functions */

int& ptype() { return (ptype_); }

int& uid() { return (uid_); }

int& size() { return (size_); }

int& iface() { return (iface_); }

double& timestamp() { return (ts_); }

};

NSv2 Workshop kfall@ee.lbl.gov Slide 48

Trace Callbacks

� may opt to invoke a Tcl function in lieu of writing to �le

� see the �le tcl/ex/callback demo.tcl

MyTest instproc begin {} {

...

$link12_ trace-callback $ns_ "$self dofunc"

...

}

MyTest instproc dofunc args {

... process args ...

}

� Args passed to the callback are a string containing a trace output

line (e.g.):

- 0.80612 0 1 tcp 1000 ------ 0 0.0 1.0 9 13

NSv2 Workshop kfall@ee.lbl.gov Slide 49

Monitors

� Queue monitors: aggregation points for arrival/depart/drop stats

� Flow monitors: similar, but on a per-ow basis

� Snoop queues: part of the topology, \taps" packet ow, delivers

samples to associated monitor

Queue

Delay

Agent/Null

Link

Link::entry

SnoopQueue/In SnoopQueue/Out

SnoopQueue/Drop

QueueMonitor

Figure 2: A QueueMonitor and supporting objects

NSv2 Workshop kfall@ee.lbl.gov Slide 50

Monitor Stats

� Simple stats kept by monitors:

{ arrivals (bytes and packets)

{ departures (bytes and packets)

{ drops (bytes and packets)

� Aggregate stats (optional):

{ queue occupancy integral

{ (bytes or packets)

� QueueMonitor/ED objects

{ \early" drops (bytes and packets)

{ some drops have this distinction (e.g. RED)

� Flow monitors:

{ types QueueMonitor/ED/Flow and QueueMonitor/ED/Flowmon

{ same as queue monitors, but also on per-ow basis

{ ow de�ned as combos of (src/dst/owid)

{ ow mon aggregates and creates new ow objects

NSv2 Workshop kfall@ee.lbl.gov Slide 51

Mathematical Support

� Random number generation

{ RNG implemented in simulator

(should produce same results on various platforms)

{ based on S. Park and K Miller, CACM 31:10, Oct. 1988

{ support for multiple streams

{ di�erent seeding options

� Random variables

{ distributions applied to RNG streams

{ distributions: uniform, exponential, pareto, constant, hyper-

exponential

� Integrals

{ approximation of integral by discrete sums

{ used for average queue size computations

� Samples

{ collect samples

{ provides mean, variance, sum, and count

NSv2 Workshop kfall@ee.lbl.gov Slide 52

Break. . .

NSv2 Workshop kfall@ee.lbl.gov Slide 53

Hash classi�er

� Map packets to associated ows or classes

� Currently: src/dst, src/dst/�d, �d plus default

Hash Classifier

htab_

slot_

Hash

Function
Packet

hnodes

Hash Functions: Source/Dest, Source/Dest/FID, FID

Hnodes: active, slot, src, dst, fid

default

NSv2 Workshop kfall@ee.lbl.gov Slide 54

CBQ: Class Based Queueing

� Floyd and Jacobson, "Link-sharing and Resource Management

Models for Packe t Networks", ToN, Aug 1995

� rewrite from CBQ code in ns-1

� packets are members of classes

� classes may contain a priority and a bandwidth allocation

� classes may borrow unused bandwidth from other classes

� packets are scheduled using a round-robin scheduler according

to the classes they belong to:

{ packet-by-packet RR

{ weighted RR

{ high-to-low priority

NSv2 Workshop kfall@ee.lbl.gov Slide 55

CBQ Implementation

Queue
(arbitrary)

Queue
(arbitrary)

SD

SD Connector

CBQClass

CBQClass

Classifier

(e.g. hash)

SI

SI
SO

SO

CBQ

(scheduler)

QMon

QMon

CBQLink

head_

drophead_

classifier_ queue_

� Major components:

{ classi�er (maps packets to classes)

{ classes (holds class state)

{ scheduler (schedules packet departures)

� Implemented as a subclass of link: CBQ link

NSv2 Workshop kfall@ee.lbl.gov Slide 56

Router Mechanisms

� Floyd and Fall, "Router Mechanisms to Support End-to-End

Congestion Control", LBNL TR, Feb 1997

� port from ns-1 version based on new FlowMon and CBQ

Connector

RED
Queue

RED
Queue

SD

CBQClass

CBQClass

Classifier

SI

SI
SO

SO

CBQ

(scheduler)FlowMon
head_

drophead_

classifier_ queue_

CBQLink with Router Mechanisms

FlowMon

w/default

SD ESD

ESD

okboxfm_

pboxfm_

NSv2 Workshop kfall@ee.lbl.gov Slide 57

