
# Link ARQ issues for IP traffic draft-ietf-pilc-link-arq-issues-01.txt

Gorry Fairhurst
Department of Engineering
University of Aberdeen

Lloyd Wood Cisco Systems Ltd

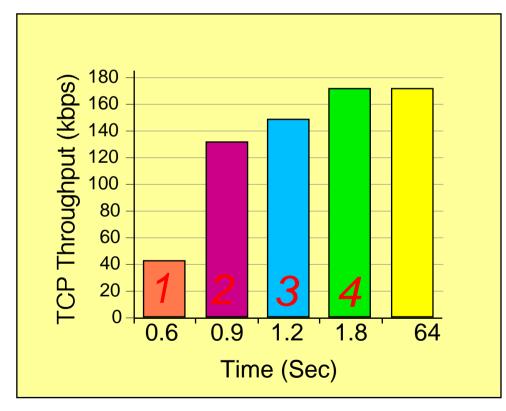
PILC WG IETF-50 Minneapolis, USA



## **ARQ** Persistence

G. Fairhurst & L Wood, IETF-50, Minneapolis

#### IP doesn't require strict reliability


IP flows benefit from: (i) low loss

(ii) timely delivery

#### Types of link ARQ:

None Low Persistence (e.g. 802.11) High Persistence (e.g. irDA) Perfect Persistence (e.g. HDLC)

Average throughput for one TCP bulk flow (5 MB) Link rate = 2 Mbps, Frame size = 52 B, Link RTT = 600 ms Frame error rate = 0.1



Persistency needed depends upon anticipated error rate / duration

## Edits applied to -01

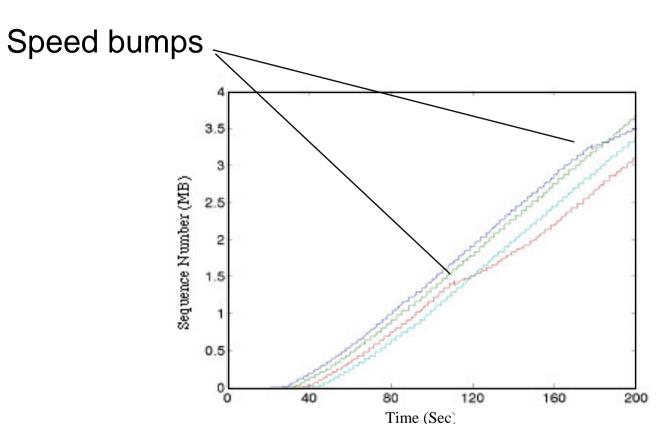
G. Fairhurst & L Wood, IETF-50, Minneapolis

Many small "fixes" to wording

Incorporated feedback to list / authors

Clarification of persistence in shared links

Ethernet example changed


Persistence impacts utilisation

#### Eliminated 64 sec constraint

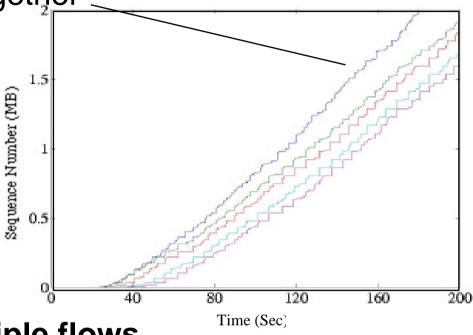
Not clear how this applies to link layer

# Key Issue 1: Sharing - Low Persistence

G. Fairhurst & L Wood, IETF-50, Minneapolis



Low persistence ARQ, 4 TCPs Link rate = 2 Mbps, Frame size = 52 B, Link RTT = 600 ms Frame error rate = 0.2


## Single link, multiple flows

Bounded impact on path RTT Some loss Speed bumps

## Key Issue 1: Sharing - High Persistence

G. Fairhurst & L Wood, IETF-50, Minneapolis

All flows suffer together



High persistence ARQ, 4 TCPs Link rate = 2 Mbps, Frame size = 52 B, Link RTT = 600 ms Frame error rate = 0.2

Single link, multiple flows

Link ARQ jitter impacts all sessions Reduction in throughputs of other sharing flows

#### Proposed solutions with high persistence

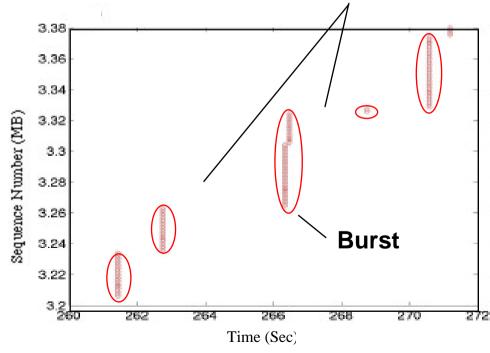
Requires "fine grain" differentiation, per flow processing Research issue with large numbers of flows

## **Bumps & Bursts**

ARQ delay

G. Fairhurst & L Wood, IETF-50, Minneapolis

#### High Persistence ARQ (§2.2)


cwnd remains open RTO grows with increased link jitter "Microscopic" TCP transmit bursts

#### Low Persistence ARQ (§2.3)

cwnd reduces after TCP retransmission Bounded impact on RTO

"Macroscopic" speed bumps

#### Loss reduces average throughput



TCP with High Persistence ARQ

High persistent ARQ, Single TCP Link rate = 2 Mbps, Frame size = 52 B, Link RTT = 600 ms Frame error rate = 0.2

## Key Issue 2: Classification

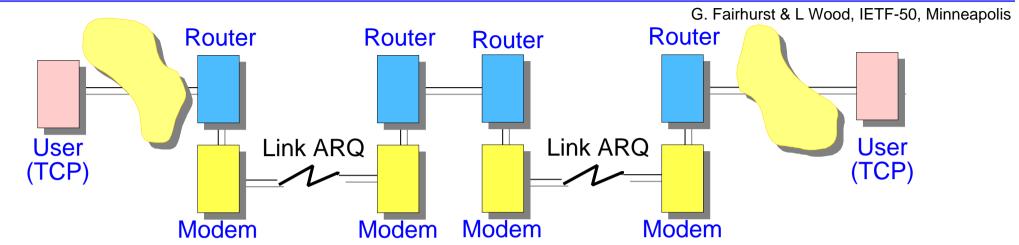
G. Fairhurst & L Wood, IETF-50, Minneapolis

#### Not all applications need high persistence ARQ

Delay-sensitive flows suffer (e.g. RTP/UDP)

#### Implicit differentiation is a hard problem (ARQ § 3.2)

New applications require adding new interpreters


Cost per packet needs considered (not fast-path decision)

#### How does link map flow to ARQ behaviour?

Flow type does not imply ARQ persistence (semantic gap)

Without this, difficult to advocate hi-persistent approach

## Key Issue 3: Multiple Links along Path



Today's edge link is tomorrow's transit-to-a-cloud link

#### Don't know how many links along path

After RTO, TCP will give up / retransmit Can't be sure of the path delay

#### There may also be congestion loss

Link ARQ shouldn't adversely delay end-to-end feedback TCP congestion control, ECN, TFRC ...

## Key Issue 4: Shared Channel

G. Fairhurst & L Wood, IETF-50, Minneapolis

#### Persistence usually low

Stability
Shadowing effects

#### Variable retransmit delay

Need to prevent congestion: Back-off delay

"cost" of retransmission: Access delay

#### **Many different schemes**

#### Recommendations

## Link ARQ is a useful tool (among others)

G. Fairhurst & L Wood, IETF-50, Minneapolis

#### Low Persistence:

Simpler (and fewer buffers) More predictable Safe

#### **High Persistence:**

More complexity (e.g. per-flow ARQ, Classifiers)
Set of caveats

#### Flow Management:

Improves sharing between IP flows (e.g. per-flow ARQ)

Guidance required to get trade-offs correct

Safest approach for IP is low persistence

## Edits planned

G. Fairhurst & L Wood, IETF-50, Minneapolis

Clarify perfect persistence - HDLC/irDA example

**Clarify MAC wording** 

Persistence in shared (contention) channels

Outage behaviour (developed from link text)

Impact on multicast, SCTP, RTCP retransmit...

Incorporate any feedback to list / authors

G. Fairhurst & L Wood, IETF-50, Minneapolis

draft-ietf-pilc-link-arq-issues-01.txt (March 2001)