
Challenges in
Data Sensing, Transmission
and Access posed by New

Radio Astronomy
Telescopes

Charles Smith
CSIRO

charles.smith@csiro.au

Exploring the Universe

Low Frequency Dipole
70MHz-450MHz

Phased Array Feed
450MHz-3GHz

New Radio Sensor Types

Aperture Array
500MHz - 1GHz

H1 (21cm line) Freq = 1420.4 MHz

MRO Site
Network & Computing

Infrastructure
Architecture

MRO - Yes, this is in the
middle of absolutely

nowhere.

ASKAP - Data Plane
Architecture

192 Element
Focal Plane

Array

Analogue
to

Digital
Sampler

Course
Filter
Bank

Correlator

Beam
Former

Fine
Filter
Bank

192
x

Coax

192
x

10G
Fibre

64
x

10G
Fibre

16 x
GbE
Cat6

Correlator
Control

Computer10GbE
Fibre

Antenna Pedestal Central Site

16 x 1 x

36 x

Ethernet
Switch

DWDM
System

DWDM
System LH

Fibre

G’ton

10GbE
Fibre

10GbE
Fibre

1 x

10 GbE 4 x GbE GbE

Corr
Shelf 1

Corr
Shelf 2

Corr
Shelf 3

Corr
Shelf 4

Corr
Shelf 13

Corr
Shelf 14

Corr
Shelf 15

Corr
Shelf 16

Corr
Shelf 5

Corr
Shelf 6

Corr
Shelf 7

Corr
Shelf 8

Corr
Shelf 9

Corr
Shelf 10

Corr
Shelf 11

Corr
Shelf 12

CCC
13

CCC
14

CCC
15

CCC
16

CCC
9

CCC
10

CCC
11

CCC
12

CCC
1

CCC
2

CCC
3

CCC
4

CCC
5

CCC
6

CCC
7

CCC
8

16 x GbE

Data Out Data Out

256 GbE
20 10GbE

Redundant Link Gateway
Satellite Gateway

Site Firewall & Router

16 x
16 x

CCC Control

CCC Data

36 xACC Control

36 xACC KVM/IP

PPPoE
Services
Switch

6 xBCC Control

Data 2
Data 1

Data 4
Data 3

Control Site Traffic

KVM/IP

BCC
CCC

n x

n x

n x

Visitor/Non CSIRO
Net Access Ports

Production Net
Access Ports

Video
Conference

Satellite Uplink

ATDC
Reference

DHCP TFTP DNS
CC

Infrastructure
Weather

CC

Master Monitor
CC

Gigabit Link
to Geraldton

DWDM Transmission
to Geraldton

61 10GbE

~300 GbE

5 10GbE
Waves
1 GbE
Wave

IP PBX

Terminal
Server

ASKAP - Site Network

Correlator Data 256 x

10 GbE GbE

Square Kilometer Array - SKA

Moving Data Sets Around

The need for a high-
performance file/stream
transport protocol in

Science

Sensing & Processing in an Array

Output of an Array Observation
Image Data Cube

Image Data Cubes for MWA

2700

2700

2700 2700

768

4 Polarizations
1 Weight
@ 4 bytes each

112 Gigabytes / Cube

One produced every
12 minutes

16 Terabytes / Day

5.9 Petabytes / Year

Image Data Cubes for ASKAP

3600 -
10,800

3600 - 10,800

2700 2700

512 Continuous
or 16,384 spectral

4 Polarizations
1 Weight
@ 4 bytes each

53 Gigabytes
to 30 Terabytes/Cube

Wallaby all sky survey
1000 Cubes - 3.4PB

Dingo (Deep Focus)
2 x 2500 hrs (50 cubes)
5 x 500 hrs (250 cubes)
Total 2.6PB

Data Image Cubes Transport

• Given a 10 Gigabit Ethernet Connection
• 3.4-Terabyte image takes

~45 minutes to transport
• 71-Terabyte visibility image takes

~15 hours to transport

• A reliable, high-speed transport protocol
is required.

• TCP-based transports just cannot fill a
10-Gigabit/s pipe.

Saratoga
A reliable, UDP-based, file/stream/bundle tranport protocol

What is Saratoga ?

• Saratoga is a high-speed, UDP-based, peer-to-peer protocol, providing
error-free guaranteed delivery of files, or streaming of data.

• Flood data packets out as fast as you can. No specified congestion
control is required, since data is usually only going one hop over a
private link, or across high-speed, low-congestion private networks.

• No specified timers means no timeouts, so Saratoga is ideal for very
long propagation delay networks (like deep space).

• Every so often the transmitter asks for an acknowledgement from the file
receiver. The receiver can also send acks if it thinks it needs to, or to
start/restart/finish a transfer.

• Acks are Selective Negative Acknowledgements (SNACKs) indicating
received packets, and any gaps to fill with resent data, including
information so that intelligent sender rate control or congestion control
can be provided if needed.

• Any multiplexing of flows is done by the Saratoga peers.
• Saratoga is an excellent protocol to use in asymmetric network

topologies.

Saratoga is a reliable transport over UDP

• The UDP checksum is used per packet to cover both the
header and payload. It is consistent, but not that strong
(oneʼs complement), and does not provide end-to-end
guarantees.

• An optional end-to-end checksum, using one of CRC32/
MD5/SHA-1, over the entire file being transferred, increases
confidence that a reliable copy has been made, and that
fragments have been reassembled correctly.

• The HOLESTOFILL list on the receiver requests the
transmitter to re-send frames that have not been properly
received (a SNACK).

• The transmit window does not move until the holes have
been acknowledged by a HOLESTOFILL frame with an
advanced offset. The receive window only advances when
offsets are contiguous.

Optional Features of Saratoga
• Uses link-local multicast to advertise presence and discover

peers.
• Data can be sent to local multicast addresses for multiple peers

to receive. This is ideal for simultaneous distribution of file
updates to multiple peers.

• Streaming of data is supported. This allows Saratoga to be used
for real-time delivery outside the file-based paradigm.

• UDP-Lite is supported when errors in data received can be
tolerated. The UDP-Lite checksum covers a minimum of IP/UDP-
Lite/Saratoga headers. The header content is always checked so
that the information about the data is error-free.

• Saratoga can also support “DTN bundle” delivery, and can act as
a “bundle convergence layer”. This was shown on the UK-DMC
satellite.

• Given reliable delivery in streaming mode, then Saratoga could
be used as a transport for higher-layer protocols such as HTTP.

• A far higher-performing solution than TFTP (the trivial file transfer
protocol) when delivery and reliability is required for system
remote booting or updates.

Why Saratoga instead of FTP/TCP ?

• For high throughput and link utilization on dedicated links, where a
single TCP flow cannot fill the link to capacity.

• For links where TCPʼs assumptions about loss/congestion/competition
simply donʼt hold. i.e. High speed bulk transfer.

• There is no such thing as “slow-start” in Saratoga.

• Able to cope with high forward/back network asymmetry (>850:1).

• Long path-delay use – eventually TCP will fail to open a connection
because its SYN/ACK exchange wonʼt complete. TCP has many
unwanted timers.

• Simplicity. TCP is really for a conversation between two hosts; needs a
lot of code on top to make it transfer files. A focus on just moving files
or streams of data makes sequence numbering simpler.

• Having SNACKs means that handling a sequence number
wraparound when in streaming or bundling mode becomes easy.

time t

tra
ns

fe
r r

at
e

M
bp

s channel errors leads to
packet losses and resends

TCP
slow start mode

TCP congestion
avoidance mode

TCP fast recovery
halves its rate

Saratoga

TCP
TCP assumes loss indicates
congestion and slows its rate

header overheads

link rate

link capacity
unused by TCP

Why Saratoga instead of FTP/TCP ?

What Saratoga does not do

• There is no MTU discovery mechanism, so you have to
know the maximum packet size your network can transmit
at. i.e. dictated by the frame size. This is okay for your own
private network, but would be troublesome if used across
the Internet.

• There is no such thing as “slow-start” or congestion control.
That is considered bad and unsociable behaviour on the
Internet. Saratoga just blasts away on a link with no regard
for other flows - which is the exact behaviour that makes it
desirable in these environments!

Saratoga Transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

PUT Put a named file or stream data to the peer

PUTDIR Put a directory listing of local files to the peer

DELETE Delete a named file from the peer

Saratoga Frame Types

BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ʻgetʼ transaction
get file
get directory listing
delete a file.

METADATA Sent at start of transaction. Initiates a ʻputʼ transaction.
Describes the file, bundle or stream:

set identity for transaction
file name/details, including size.

set descriptor size offsets to be used for this transaction

(16/32/64/128-bit pointer sizes.)

DATA Actual Data.
Uses descriptor of chosen size to indicate offset for data
segment in the file/bundle or stream.

HOLESTOFILL Missing Data Offsets / Error & Status Messages
Selective negative ack (ʻsnackʼ).
Set left window edge for successful transfer so far
List of offsets and lengths indicate missing ʻholesʼ in data.

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 3

DATA 4

HOLESTOFILL optional / resume transfer

DATA 3frame lost

DATA 5

HOLESTOFILL I need 3 again

HOLESTOFILL All received OK

Transaction PUT or PUTDIR

Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3

DATA 5

DATA 3frame lost

DATA 4
HOLESTOFILL I need 3 again

HOLESTOFILL All received OK

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Saratoga Header Frame Format

Version
Flag

UDP Source Port UDP Destination Port

UDP Length UDP Checksum

Packet Type
Flag Other Saratoga

Flags

Saratoga Data
Fields

Descriptor
Size Flag

Conclusion
• If you have a high-speed private network and

you want to get as much data reliably between
peers as quickly as possible, then Saratoga is
a good choice. (Thatʼs why itʼs used to
download images from SSTLʼs DMC
satellites.)

• Radio astronomy has high-speed private
networks, and needs to move a massive
amount of data around. So weʼre implementing
Saratoga for radio astronomy.

