Net wor k Wor ki ng G oup

I nternet-Draft

| nt ended st at us:

Experi nment al

Pr ot oco

Expires: Decenber 12, 2013
Saratoga: A Scal abl e Data Transfer
dr af t - wood- t svwg- sar at oga- 14
Abstract

Thi s docunent specifies the Saratoga transfer protocol.

L. Wod
Surrey al umi
W Eddy
Syst ens
C. Smth
Val | ona
| vanci c
NASA

C. Jackson
SSTL

June 10, 2013

M|

W

Sar at oga was

originally developed to transfer renote-sensing imagery efficiently

froma lowEarth-orbiting satellite constellation
i ncl udi ng ad- hoc peer-to-peer comuni cations,
and grid conputing.
di ssem nati on protocol

many ot her

del ay-t ol er ant

i ght wei ght
optionally

scenari os,
net wor ki ng,
, content
uses UDP-Lite.

t hat

but is useful

f or

Saratoga is a sinple,

buil ds on UDP, and
Saratoga is intended for use when noving

files or stream ng data between peers which may have pernanent,
and is capable of transferring

sporadic or intermttent connectivity,
very large amobunts of data reliably under adverse conditions.
is designed to cope with highly asymretric |ink or
and can support fully-unidirectional
Saratoga can al so cope with very |arge
In scenarios with dedicated |inks,
Saratoga focuses on high link utilization to nake the nost of
whi | e standard congesti on contr ol
be inplenmented for operation over shared |inks.

Sar at oga protoco

pat h capaci
data transf

files for exascal e conputi ng.

connectivity tinmes,

ty between peers,
er if required.

i npl emented via a sinple negative-ack ARQ nechani sm

speci fi ed

experi nment al

n this docunent

Status of This Meno

This Internet-Draft

provi si ons

of BCP 78 and BCP 709.

is submtted to | ETF in ful

Internet-Drafts are working docunments of the Internet

Task Force

(1 ETF).

wor ki ng docunents as Internet-Drafts.

Drafts is at

Wod, et al.

Expi res Decenber

12, 2013

The

limted

nmechani sms can
Loss recovery is
The protocol
is considered to be appropriate for

use on private |IP networks.

conformance with the

Engi neeri ng
Not e that other groups may al so distribute
The list of current
http://datatracker.ietf.org/drafts/current/.

I nt er net -

[Page 1]

I nternet-Draft Sar at oga June 2013

Internet-Drafts are draft docunments valid for a maxi mum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft wll expire on Decenber 12, 2013.
Copyright Notice

Copyright (c) 2013 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions wth respect
to this docunent.

Thi s docunment nmay not be nodified, and derivative works of it may not
be created, except to format it for publication as an RFC or to
translate it into | anguages other than Engli sh.

Tabl e of Contents

1. Background and Introduction . . . C e e e e 3
2. Overview of Saratoga File Transfer C e e e e 6
3. Optional Parts of Saratoga . . A
3.1. Optional but useful functrons |n Saratoga I
3.2. Optional congestion control . . . 74
3.3. Optional functionality requiring other protocols T
4. Packet Types .. 13
4.1. BEACON 16
4.2 REQUEST 2
4.3 METADATA« 26
4.4 DATA
4.5. STATUS . . 1)
5. The Directory Entry Coe Y 24
6. Behavi our of a Saratoga Peer e e e e 45
6.1 Saratoga Sessions . 45
6.2 Beacons .. 49
6.3 Upper - Layer Interface 49
6.4 Inactivity Timer . 49
6.5 Streans and wapping 50
6.6. Conpleting file delivery and endlng the session. b1
7. Miling list . . X
8. Security Cbnsrderatrons e X
9. |ANA Considerations b2

Wod, et al. Expi res Decenber 12, 2013 [Page 2]

I nternet-Draft Sar at oga June 2013

10. Acknowl edgenrents . b2
11. A Note on Naming . 53
12. References . 53

12.1. Normative References 53

12.2. Informative References 53
Appendi x A Ti nestanp/ Nonce field considerations b5b
Aut hors’ Addresses . b6

1. Background and Introduction

Saratoga is a file transfer and content di ssem nation protocol
capabl e of efficiently sending both small (kilobyte) and very | arge
(exabyte) files, as well as stream ng continuous content. Saratoga
was originally designed for the purpose of large file transfer from
small low Earth-orbiting satellites. 1t has been used in daily
operations since 2004 to nove m ssion imging data files of the order
of several hundred negabytes each fromthe D saster Monitoring
Constellation (DMC) renote-sensing satellites to ground stations.

The DMC satellites, built at the University of Surrey by Surrey
Satellite Technology Ltd (SSTL), all use IP for payl oad

comuni cations and delivery of Earth inagery. At the tine of this
witing, in March 2013, nine DMC satellites have been | aunched into
orbit since 2003, five of those are currently operational in orbit,
and three nore are planned. The DMC satellites use Saratoga to
provide Earth inmagery under the aegis of the International Charter on
Space and Major Disasters. A pass of connectivity between a
satellite and ground station offers an 8-12 mnute tine wi ndow in
which to transfer imagery files using a m nimum of an 8.1 Mps
downl i nk and a 9.6 kbps uplink. The |atest operational DMC
satellites have faster downlinks, capable of 20, 40, 80, 105 or 201
Mops. Newer satellites are expected to use downlinks to 400 Mops,

wi t hout significant increases in uplink rates. This high degree of
[ink asymmetry, with the need to fully utilize the avail able downli nk
capacity to nove the volune of data required within the limted tine
avai |l abl e, notivates nuch of Saratoga s design.

Further details on how these DMC satellites use | P to conmmunicate
with the ground and the terrestrial Internet are discussed el sewhere
[Hogi e05] [Wwod07a] . Saratoga has al so been eval uated for use in

hi gh- speed private ground networks supporting radi o astronony sensors
[Wod11] .

Store-and-forward delivery relies on reliable hop-by-hop transfers of
files, renmoving the need for the final receiver to talk to the

ori ginal sender across |long delays and allowi ng for the possibility
that an end-to-end path may never exi st between sender and receiver
at any given tinme. Breaking an end-to-end path into nultiple hops

Wod, et al. Expi res Decenber 12, 2013 [Page 3]

I nternet-Draft Sar at oga June 2013

allows data to be transferred as quickly as possible across each

i nk; congestion on a longer Internet path is then not detrinmental to
the transfer rate on a space downlink. Use of store-and-forward hop-
by-hop delivery is typical of scenarios in space exploration for both
near - Earth and deep-space m ssions, and useful for other scenarios,
such as underwater networking, ad-hoc sensor networks, and sone
nmessage-ferrying relay scenarios. Saratoga is intended to be useful
for relaying data in these scenari os.

Saratoga can optionally also be used to carry the Bundl e Protocol
"bundl es" intended for Delay and Di sruption-Tol erant Networking (DTN
by the I RTF DTN Research Group [RFC5050]. This has been tested from
orbit using the UK-DMC satellite [lIvancicl0]. How Saratoga can
optionally function as a "bundl e convergence | ayer" al ongside a DTN
bundl e agent is specified in a conpani on docunent

[1-D. wood-dt nrg-sarat oga] .

Saratoga contains a Sel ective Negative Acknow edgenent (SNACK)

"hol estofill’ mechanismto provide reliable retransm ssion of data.
This is intended to correct |osses of corrupted |ink-1layer frames due
to channel noise over a space |ink. Packet |osses in the DMC are due
to corruption introduci ng non-recoverable errors in the frane. The
DMC desi gn uses point-to-point |links and scheduling of applications
in order, so that the link is dedicated to one application transfer
at a time, nmeaning that packet | oss cannot be due to congestion when
applications conpete for |ink capacity sinmultaneously. In other

wi rel ess environnments that may be shared by many nodes and
applications, allocation of channel resources to nodes beconmes a MAC
| ayer function. Forward Error Coding (FEC) to get the nost reliable
transm ssion through a channel is best left near the physical |ayer
so that it can be tailored for the channel. Use of FEC conpl enents
Saratoga’ s transport-|evel negative-acknow edgenent approach that
provi des a reliable ARQ nechani sm

Saratoga is scalable in that it is capable of efficiently
transferring small or large files, by choosing a wwdth of file offset
descriptor appropriate for the filesize, and advertising accepted

of fset descriptor sizes. 16-bit, 32-bit, 64-bit and 128-bit
descriptors can be selected, for maximumfile sizes of 64KiB-1 (<64
Ki | obytes of disk space), 4G B-1 (<4 G gabytes), 16Ei B-1 (<16
Exabytes) and 256 Ei Ei B-1 (<256 Exa-exabytes) respectively.

Earth imaging files currently transferred by Saratoga are nostly up
to a few gigabytes in size. Sone inplenentations do transfer nore
than 4 G B in size, and so require offset descriptors larger than 32
bits. W believe that supporting a 128-bit descriptor can satisfy
all future needs, but we expect current inplenentations to only
support up to 32-bit or 64-bit descriptors, depending on their

Wod, et al. Expi res Decenber 12, 2013 [Page 4]

I nternet-Draft Sar at oga June 2013

application needs. The 16-bit descriptor is useful for small
messages, including nessages from8-bit devices, and is al ways
supported. The 128-bit descriptor can be used for noving very |arge
files stored on a 128-bit filesystem such as on QpenSol aris ZFS.

As a UDP-based protocol, Saratoga can be used with either |Pv4 or
| Pv6. Conpatibility between Saratoga and the wi de variety of |inks
that can already carry IP traffic is assured.

H gh link utilization is inportant during periods of limted
connectivity. Gven that Saratoga was originally devel oped for
schedul ed peer-to-peer comuni cati ons over dedicated links in private
net wor ks, where each application has the entire link for the duration
of its transfer, many Saratoga inplenentations deliberately |ack any
form of congestion control and send at line rate to maxi m se

t hroughput and link utilisation in their limted, carefully
controlled, environnents. |In accordance with UDP Cui delines

[RFC5405] for protocols able to traverse the public Internet, newer

i npl enentations may perform TCP-Friendly Rate Control (TFRC)

[RFC5348] or other congestion control mechanisns. This is described
further in [I-D. wood-tsvwg-sarat oga-congestion-control].

Saratoga was originally inplenented as outlined in [Jackson04], but

t he specification given here differs substantially, as we have added
a nunber of capabilities while cleaning up the initial Saratoga
specification. The original Saratoga code uses a version nunber of

0, while code that inplenments this version of the protocol advertises
a version nunber of 1. Further discussion of the history and

devel opnent of Saratoga is given in [Wod07b].

Thi s docunent contains an overview of the transfer process and
sessions using Saratoga in Section 2, followed by a formal definition
of the packet types used by Saratoga in Section 4, and the details of
t he vari ous protocol nechanisns in Section 6.

Here, Saratoga session types are |abelled with underscores around
| oner case nanes (such as a "_get_ " session), while Saratoga packet
types are labelled in all capitals (such as a "REQUEST" packet) in
order to distinguish between the two.

The remai nder of this specification uses 'file’ as a shorthand for
"binary object’, which may be a file, or other type of data, such as
a DTN bundle. This specification uses "file when also discussing
stream ng of data of indeterm nate |length. Saratoga uses unsigned
integers in its fields, and does not use signed types.

Wod, et al. Expi res Decenber 12, 2013 [Page 5]

I nternet-Draft Sar at oga June 2013

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119. [RFC2119]

2. Overview of Saratoga File Transfer

Saratoga is a peer-to-peer protocol in the sense that nultiple files
may be transferred in both directions sinultaneously between two
communi cating Saratoga peers, and there is not intended to be a
strict client-to-server relationship.

Sar at oga nodes can act as sinple file servers. Saratoga supports
several types of operations on files including "pull" downl oads,
"push” uploads, directory listing, and deletion requests. Each
operation is handled as a distinct "session" between the peers.

Sar at oga nodes MAY advertise their presence, capabilities, and
desires by sendi ng BEACON packets. These BEACONs are sent to either
a reserved, unforwardable, nulticast address when using |IPv4, or a

Il ink-1ocal all-Saratoga-peers nmulticast address when using |IPv6. A
BEACON m ght al so be unicast to anot her known node as a sort of
"keepal ive". Saratoga nodes may dynam cally di scover other Saratoga
nodes, either through |istening for BEACONs, through pre-
configuration, via sone other trigger froma user, |ower-I|ayer
protocol, or another process. The BEACON is useful in many
situations, such as ad-hoc networking, as a sinple, explicit,
confirmation that another node is present; a BEACON is not required
in order to begin a Saratoga session.. BEACONs have been used by the
DMC satellites to indicate to ground stations that a |ink has becone
functional, a solid-state data recorder is online, and the software
is ready to transfer any requested files.

A Sarat oga session begins with either a get , put_, _getdir_, or
del ete session REQUEST packet corresponding to a desired downl oad,
upl oad, directory listing, or deletion operation. _put_ sessions nay

i nstead begin directly with METADATA and DATA, without an initial
REQUEST/ OKAY STATUS exchange; these are known as 'blind puts’. The
nost conmon envi sioned session is the _get_, which begins with a

si ngl e Saratoga REQUEST packet sent fromthe peer wishing to receive

the file, to the peer who currently has the file. |If the session is
rejected, then a brief STATUS packet that conveys rejection is
generated. |If the file-serving peer accepts the session, an OKAY

STATUS can be optional; the peer can inmediately generate and send a
nore useful descriptive METADATA packet, along with some nunber of
DATA packets constituting the requested file.

These DATA packets are finished by (and can intermttently include) a
DATA packet with a flag bit set that demands the file-receiver send a

Wod, et al. Expi res Decenber 12, 2013 [Page 6]

I nternet-Draft Sar at oga June 2013

reception report in the formof a STATUS packet. This DATA-driven
cycle is shown in Figure 1. The STATUS packet can i ncl ude

"hol estofill’ Selective Negative Acknow edgenent (SNACK) i nfornation
listing spans of octets within the file that have not yet been

recei ved, as well as whether or not the METADATA packet was received,
or an error code termnating the transfer session. Once the
information in this STATUS packet is received, the fil e-sender can
begin a cycle of selective retransm ssions of m ssing DATA packets,
until it sees a STATUS packet that acknow edges total reception of
all file data.

AT SENDER AT RECEI VER
S +
| START |
S +
| STATUS i s processed when it arrives.
----- R
/ | |
| e + |
| | DATA | <------mmmmmmmi e |
| +--------- + Vo
	\ repeat until STATUS	
	\ request or until end	
	\ of DATA /	
I +----!----+ +----!----+		
	DATA*	-------------------- >
+--------- + STATUS request ed R + can include error code		
	regularly fromreceiver	
\ / whi | e sendi ng DATA packets

------ * request flag set
Figure 1. STATUS and DATA cycle
In the exanple scenario in Figure 2, a get_ request is granted. The

reliable file delivery experiences | oss of a single DATA packet due
to channel -i nduced errors.

Fi | e- Recei ver Fi | e- Sender
GET REQUEST -----------mmmmmma oo - >
(indicating error/reject) <---- STATUS

or
R METADATA
Qe s imamamcioaioaiiaoas DATA #1

Wod, et al. Expi res Decenber 12, 2013 [Page 7]

I nternet-Draft Sar at oga June 2013

STATUS ----------------- > (voluntarily sent at start)
(lost) <------ DATA #2
A e DATA #3 (bit set
requesti ng STATUS)
STATUS ----------------- >
(indicating that range in DATA #2 was | ost)
S DATA #2 (bit set
requesti ng STATUS)

STATUS ----------------- >

(conplete file and METADATA recei ved)
Figure 2: Exanple _get session sequence

A put_is simlar to _get , although once the OKAY STATUS is

recei ved, DATA is sent fromthe peer that originated the _put_
request. A 'blind _put ' does not require an REQUEST and OKAY STATUS
to be exchanged before sendi ng DATA packets, and is efficient for

| ong-del ay or unidirectional |inks.

A _getdir_ request proceeds simlarly, though the DATA transfer
contains a directory record with one or nore directory entries,
described later, rather than a given file's bytes. _getdir_is the
only request to also apply to directories, where one or nore
directory entries for individual files is received.

The STATUS and DATA packets are allowed to be sent at any tine within
the scope of a session, in order for the file-sending node to
opti m ze buffer nmanagenment and transmi ssion order. For exanple, if
the file-receiver already has the first part of a file froma
previous disrupted transfer, it may send a STATUS at the begi nning of
the session indicating that it has the first part of the file, and so
only needs the last part of the file. Thus, efficient recovery from
i nterrupted sessions between peers becones possible, simlar to
ranged FTP and HTTP requests. (Note that METADATA with a checksumis
useful to verify that the parts are of the sane file and that the
file is reassenbled correctly.)

Wod, et al. Expi res Decenber 12, 2013 [Page 8]

I nternet-Draft Sar at oga June 2013

The Saratoga 'blind _put_' session is initiated by the fil e-sender
sendi ng an optional METADATA packet followed by i medi ate DATA
packets, without requiring a REQUEST or waiting for a STATUS
response. This can be considered an "optim stic" node of protocol
operation, as it assunes the inplicit session request will be
granted. If the sender of a PUT request sees a STATUS packet
indicating that the request was declined, it MJST stop sendi ng any
DATA packets within that session imediately. Since this type of
put is open-loop for sonme period of tine, it should not be used in
scenari os where congestion is a valid concern; in these cases, the
file-sender should wait on its METADATA to be acknow edged by a
STATUS before sendi ng DATA packets within the session.

Figure 3 illustrates the sequence of packets in an exanple _put _
session, beginning directly with METADATA and DATA as in a blind put,
where the second DATA packet is lost. Oher than the way that it is
initiated, the nechanics of data delivery of a blind _put_ session
are simlar to a _get_ session.

Fi | e- Sender Fi | e- Recei ver

METADATA ---------------- >
DATA #1 ---------------- >
(transfer accepted) <---------- STATUS
DATA #2 ---> (lost)
DATA #3 (bit set ------------ >
requesti ng STATUS)
(DATA #2 lost) <---------- STATUS
DATA #2 (bit set ------------ >
requesti ng STATUS)
(transfer conplete) <---------- STATUS

Figure 3. Exanple PUT session sequence

In | arge-di stance scenari os such as for deep space, the large
propagati on del ays and round-trip tines involved di scourage use of

pi ng- pong packet exchanges (such as TCP's SYN ACK) for starting
sessions, and unidirectional transfers via these optimstic ’blind
_put_s’ are desirable. Blind puts_are the only node of transfer
suitable for unidirectional links. Senders sending on unidirectional
I i nks SHOULD send a copy of the METADATA in advance of DATA packets,
and MAY resend METADATA at intervals.

The _delete_ sessions are sinple single packet requests that trigger
a STATUS packet with a status code that indicates whether the file
was deleted or not. |If the file is not able to be deleted for sone
reason, this reason can be conveyed in the Status field of the STATUS
packet .

Wod, et al. Expi res Decenber 12, 2013 [Page 9]

I nternet-Draft Sar at oga June 2013

A _get _ REQUEST packet that does not specify a filenanme (i.e. the
request contains a zero-length File Path field) is specially defined
to be a request for any chosen file that the peer wishes to send it.
This "blind get ' allows a Saratoga peer to request any files that
the other Saratoga peer has ready for it, w thout prior know edge of
the directory listing, and without requiring the ability to exam ne
files or decode renote file nanes/paths for neani ngful information
such as final destination.

If afile is larger than Saratoga can be expected to transfer during
atinm-limted contact, there are at | east two feasible options:

(1) The application can use proactive fragnentation to create
multiple smaller-sized files. Saratoga can transfer sonme nunber of
these smaller files fully during a contact.

(2) To avoid file fragnentation, a Saratoga file-receiver can retain
a partially-transferred file and request transfer of the unreceived
bytes during a later contact. This uses a STATUS packet to nake

cl ear how much of the file has been successfully received and where
transfer should be resuned from and relies on use of METADATA to
identify the file. On resunption of a transfer, the new METADATA
(including file length, file tinmestanps, and possibly a file
checksunm) MUST match that of the previous METADATA in order to re-
establish the transfer. Qherwise, the file-receiver MJST assune
that the file has changed and purge the DATA payl oad received during
previ ous contacts.

Li ke the BEACON packets, a put_or a response to a _get_MAY be sent
to the dedicated I Pv4 Saratoga nmulticast address (allocated to
224.0.0.108) or the dedicated IPv6 Iink-1ocal nulticast address
(allocated to FF02:0:0:0:0:0:0:6C) for multiple file-receivers on the
link to hear. This is at the discretion of the file-sender, if it
believes that there is interest frommultiple receivers. In-progress
DATA transfers MAY al so be noved seanml essly from uni cast to nulticast
if the file-sender learns during a transfer, fromreceipt of further
uni cast _get REQUEST packets, that nultiple nodes are interested in
the file. The associ ated METADATA packet is nulticast when this
transition takes place, and is then repeated periodically while the
DATA streamis being sent, to informnewy-arrived |isteners about
the file being multicast. Acknow edgenents MJST NOT be demanded by
mul ti cast DATA packets, to prevent ack inplosion at the fil e-sender,
and instead status SNACK i nformation i s aggregated and sent
voluntarily by all file-receivers. File-receivers respond to
mul ti cast DATA with nulticast STATUS packets. File-receivers SHOULD
i ntroduce a short random del ay before sending a multicast STATUS
packet, to prevent ack inplosion after a channel -induced | oss, and
MUST listen for STATUS packets fromothers, to avoid duplicating fill

Wod, et al. Expi res Decenber 12, 2013 [Page 10]

I nternet-Draft Sar at oga June 2013

requests. The file-sender SHOULD repeat any initial unicast portion
of the transfer as nulticast last of all, and may repeat and cycle
through nulticast of the file several tinmes while file-receivers
express interest via STATUS or _get_ packets. Once in multicast and
w th METADATA being repeated periodically, new file-receivers do not
need to send individual REQUEST packets. |If a transfer has been
started using UDP-Lite and new receivers indicate UDP-only
capability, nmulticast transfers MJUST switch to using UDP to
acconmodat e t hem

3. Optional Parts of Saratoga

| mpl enenti ng support for sonme parts of Saratoga is optional. These
parts are grouped into three sections, nanely useful capabilities in
Saratoga that are likely to be supported by inplenentations,
congestion control that is needed in shared networks and across the
public Internet, and functionality requiring other protocols that is
|l ess likely to be supported.

3.1. Optional but useful functions in Saratoga

These are useful capabilities in Saratoga that inplenentations SHOULD
support, but may not, depending on scenari 0S:

- sendi ng and parsi ng BEACONSs.

- sendi ng METADATA. However, sending and receiving METADATA is
consi dered extrenely useful, is strongly recomended, and SHOULD be
done. A METADATA that is received MIST be parsed.

- stream ng data, including real-tinme stream ng of content of unknown
l ength. This stream ng can be unreliable (wthout resend requests)
or reliable (with resend requests). Session protocols such as http
expect reliable stream ng. Although Saratoga data delivery is

i nherently one-way, where a stream of DATA packets elicits a stream
of STATUS packets, bidirectional duplex comunication can be
established by using two Saratoga transfers flowing in opposite
directions.

- multicast DATA transfers, if judged useful for the environnent in
whi ch Saratoga is deployed, when nultiple receivers are participating
and are receiving the sane file or stream

- sending and parsing STATUS nessages, which are expected for

bi di recti onal conmmuni cati on, but cannot be sent on and are not
required for sending over unidirectional I|inks.

Wod, et al. Expi res Decenber 12, 2013 [Page 11]

I nternet-Draft Sar at oga June 2013

- sending and responding to packet tinmestanps in DATA and STATUS
packets. These tinestanps are useful for stream ng and for giving a
file-sender an indication of path [atency for rate control. There is
no need for a file-receiver to understand the format used for these
timestanps for it to be able to receive themfromand reflect them
back to the fil e-sender.

- support for descriptor sizes greater than 16 bits, for handling
small files, is optional, as is support for descriptor sizes greater
than 32 bits, and support for descriptor sizes greater than 64 bits.
If a descriptor size is inplenented, all sizes below that size MJST
be i npl enent ed.

3.2. Optional congestion control

Saratoga can be inplenented to perform congestion control at the
sender, based on feedback from acknow edgenment STATUS packets

[1-D. wood-tsvwg- sar at oga- congestion-control], or have the sender
configured to use sinple open-loop rate control to only use a fixed
anount of |ink capacity. Congestion control is expected to be
undesirable for many of Saratoga s use cases and expected

envi ronnental conditions in private networks, where sending as

qui ckly as possible or sinple rate control at a fixed output speed
are consi dered useful .

In accordance with the UDP Cui delines [RFC5405], congestion control
MUST be supported if Saratoga is being used across the public

I nternet, and SHOULD be supported in environnents where |links are
shared by traffic flows. Congestion control MAY NOT be supported
across private, single-flow links engineered for performance:
Saratoga’ s primary use case.

3.3. Optional functionality requiring other protocols

The functionality listed here is useful in rare cases, but requires
use of other, optional, protocols. This functionality MAY be
supported by Saratoga i npl enentations:

- support for working with the Bundl e Protocol for Del ay-Tol erant
Net wor ki ng. Saratoga can optionally also be used to carry the Bundle
Prot ocol "bundl es" that is proposed for use in Delay and D sruption-
Tol erant Networking (DTN) by the | RTF DTN Research G oup [RFC5050].
The bundl e agent acts as an application driving Saratoga. Use of a
filesystemis expected. This approach has been tested from orbit
using the UK-DMC satellite [lvancicl0]. How Saratoga can optionally
function as a "bundl e convergence | ayer" al ongside a DTN bundl e agent
is specified in a conpani on docunent [I|-D.wood-dtnrg-saratoga].

Wod, et al. Expi res Decenber 12, 2013 [Page 12]

I nternet-Draft Sar at oga June 2013

- transfers permtting sone errors in content delivered, using UDP-
Lite [RFC3828]. These can be useful for decreasing delivery tine
over unreliable channels, especially for unidirectional links, or in
decreasi ng conput ati onal overhead for the UDP Lite checksum To be
really usefuly, error tolerance requires that |ower-|ayer franes
permt delivery of unreliable data, while header information is stil
checked to assure that e.g. destination information is reliable.

If a file contains separate parts that require reliable transm ssion
wi thout errors or that can tolerate errors in delivered content,
proactive fragnentation can be used to split the file into separate
reliable and unreliable files that can be transferred separately,
using UDP or UDP-Lite.

If parts of a file require reliability but the rest can be sent by
unreliable transfer, the file-sender can use its know edge of the
internal file structure and vary DATA packet size so that the
reliable parts always start after the offset field and are covered by
t he UDP-Lite checksum

Afile that permits unreliable delivery can be transferred onwards
using UDP. |f the current sender does not understand the internal
file format to be able to decide what parts nust be protected with
payl oad checksum coverage, the current sender or receiver does not
support UDP-Lite, or the current protocol stack only inplenents
error-free frame delivery below the UDP | ayer, then the file MAY be
del i vered usi ng UDP

4. Packet Types

Saratoga is defined for use with UDP over either |Pv4 or |Pv6

[RFCO768] . UDP checksuns, which are mandatory with | Pv6, MJST be
used with IPv4. Wthin either version of |IP datagram a Sarat oga
packet appears as a typical UDP header followed by an octet

i ndi cating how the renai nder of the packet is to be interpreted:

1111111111222222222233
01234567890123456789012345678901
B il a i S I o I i ot S S S I S S S S it o
| UDP source port | UDP desti nati on port |
e T T e e T S S e e S S e e Rl i e e e e
| UDP | engt h | UDP checksum |
e i S s S S T b
| Vers | Pckt Type| other Saratoga fields ... //
B b i T N S S e e i i T i i e i i e |

Wod, et al. Expi res Decenber 12, 2013 [Page 13]

I nternet-Draft Sar at oga June 2013

Saratoga data transfers can also be carried out using UDP-Lite

[RFC3828]. |If Saratoga can be carried over UDP-Lite, the

i npl enmentati on MJUST al so support UDP. All packet types except DATA
MUST be sent using UDP with checksuns turned on. For reliable
transfers, DATA packets are sent using UDP wth checksuns turned on.
For files where unreliable transfer has been indicated as desired and
possi bl e, the sender MAY send DATA packets unreliably over UDP-Lite,
where UDP-Lite protects only the Saratoga headers and parts of the
file that nust be transmtted reliably.

The three-bit Saratoga version field ("Ver") identifies the version
of the Saratoga protocol that the packet conforns to. The value 001
MUST be used in this field for inplenmentations conformng to the
specification in this docunment, which specifies version 1 of
Saratoga. The value 000 was used in earlier inplenmentations, prior
to the formal specification and public subm ssion of the protocol
design, and is inconpatible with version 001 in many respects.

The five-bit Saratoga "Packet Type" field indicates how the remai nder
of the packet is intended to be decoded and processed:

0 | BEACON Beacon packet indicating peer status.
REQUEST Commands peer to start a transfer.
VETADATA Carries file transfer netadata.

I I

1 | I I
2 | I I
3 | DATA | Carries octets of file data. |
4 | I I
I I I
I I I

STATUS responds to REQUEST or DATA. Can signal |ist
of unreceived data to sender during a
transfer.
B T o +

Several of these packet types include a Flags field, for which only
some of the bits have defined neanings and usages in this docunent.

O her, undefined, bits may be reserved for future use. Follow ng the
principle of being conservative in what you send and |iberal in what
you accept, a packet sender MJIST set any undefined bits to zero, and
a packet recipient MIUST NOT rely on these undefined bits being zero
on reception.

Wod, et al. Expi res Decenber 12, 2013 [Page 14]

I nternet-Draft Sar at oga June 2013

The specific formats for the different types of packets are given in
this section. Sone packet types contain file offset descriptor
fields, which contain unsigned integers. The lengths of the offset
descriptors are fixed wwthin a transfer, but vary between file
transfers. The size is set for each particular transfer, dependi ng
on the choice of offset descriptor wdth made in the METADATA packet,
which in turn depends on the size of file being transferred.

In this docunent, all of the packet structure figures illustrating a
packet format assune 32-bit | engths for these of fset descriptor
fields, and indicate the transfer-dependent |ength of the fields by
using a "(descriptor)" designation wwthin the [field] in all packet
di agranms. That is:

The exanple 32-bit descriptors shown in all diagrans here

e i R R e e e el I S R R R R e S il I I S R R R R
[(descriptor)]
B T T i S S i S T i s T e S S S S S e

are suitable for files of up to 4GB - 1 octets in length, and may be
replaced in a file transfer by descriptors using a different |ength,
depending on the size of file to be transferred:

16-bit descriptor for short files of up to 64KiB - 1 octets in size
(MUST be support ed)

i R s m s i i S S S S

[(descriptor)]
B T i S o g i S D S S

64-bit descriptor for longer files of up to 16EiB - 1 octets in size
(optional)

T i o S e S i e S S

[(descri ptor) /
B il a i S I o I i ot S S S I S S S S it o
/ (descri ptor, continued)]

R i T i e S e E t s o R R e SR S

128-bit descriptor for very long files of up to 256 EIEiB - 1 octets
in size (optional)

Wod, et al. Expi res Decenber 12, 2013 [Page 15]

I nternet-Draft Sar at oga June 2013

T i o S e S i e S S

[(descri ptor) /
B il a i S I o I i ot S S S I S S S S it o
/ (descri ptor, continued) /
e i R R e e e el I S R R R R e S il I I S R R R R
/ (descriptor, continued) /
B T T i S S i S T i s T e S S S S S e
/ (descriptor, continued)]

T T S i T i o S S S i a ks i o S

Descriptors are used for the descriptor size | ess one octet, e.q.
16-bit for files up to 64KB - 1 octets in size, before switching to
the larger descriptor, e.g. using the 32-bit descriptor for a 64KB
file and | arger.

For offset descriptors and types of content being transferred, the
related flag bits in BEACON and REQUEST indicate capabilities, while
i n METADATA and DATA those flag bits are used slightly differently,
to indicate the content being transferred.

Sar at oga packets are intended to fit within link MIUs to avoid the
i nefficiencies and overheads of |ower-layer fragnentation. A
Saratoga i npl enentati on does not itself performany formof MIU

di scovery, but is assunmed to be configured with know edge of usable
maxi mum | P MIUs for the Iink interfaces it uses.

4.1. BEACON

BEACON packets may be nulticast periodically by nodes wlling to act
as Saratoga peers, or unicast to individual peers to indicate
properties for that peer. Some inplenentations have sent BEACONS
every 100 mlliseconds, but this rate is arbitrary, and should be
chosen to be appropriate for the environnment and inpl enentation.

The mai n purpose for sending BEACONs is to announce the presence of
the node to potential peers (e.g. satellites, ground stations) to
provi de automatic service discovery, and also to confirmthe activity
or presence of the peer.

The Endpoint ldentifier (EID) in the BEACON serves to uniquely
identify the Saratoga peer. \Wenever the Saratoga peer begins using
a new | P address, it SHOULD i ssue a BEACON on it and repeat the
BEACON periodically, to enable Iisteners to associate the | P address
with the EID and t he peer.

For mat

Wod, et al. Expi res Decenber 12, 2013 [Page 16]

I nternet-Draft Sar at oga June 2013

0 1 2 3
01234567890123456789012345678901
B il a i S I o I i ot S S S I S S S S it o
|0 O 1] Type | FI ags |
e i R R e e e el I S R R R R e S il I I S R R R R
[Avai |l abl e free space (optional) 11
B T T i S S i S T i s T e S S S S S e
| Endpoi nt identifier... I
I I i o ST S S S S I S ity DI S S I S i o ST S I

wher e
Fom e e e e e o e oo o ot ot o ememeao s +
| Field | Description |
o e e m i +
Type 0
Fl ags convey whether or not the peer is ready to

I I I
	send/receive, what the maxi mum supported file
	size range and descriptor is, and whether and
	how free space is indicated.
Available free	This optional field can be used to indicate the
space	current free space avail able for storage.
I I I
I I I
I I I
I I I

Endpoi nt This can be used to uniquely identify the
identifier sendi ng Saratoga peer, or the adm nistrative
node that the BEACON-sender is associated with
If Saratoga is being used with a bundle agent, a
bundl e endpoint ID (EID) can be used here.
S o m m e o +

The Flags field is used to provide sonme additional information about
the peer. The first two octets of the Flags field is currently in
use. The later octet is reserved for future use, and MJST be set to
zero.

The BEACON flags field, expanding a line of flag bits wth
descriptions of each flag, is as foll ows:

BEACON Fl ags

Wod, et al. Expi res Decenber 12, 2013 [Page 17]

I nternet-Draft Sar at oga June 2013

0 1 2 3
01234567890123456789012345678901
T e S i o S e T w2 S S S S e S i o S
0] 0]

1| => Version Field: Saratoga version 1
| 0] 0] O] O] O] => Type field: BEACON Frane designation
| X| X| => Descriptor size
| X| => Supports bundl es?
| X| => Supports stream ng?
| X| X] => Sending files
| X| X => Receiving files
| X] => Supports UDP Lite?
| X => Includes free space size?
| X| X| => Freespace Descri ptor
I i S I T T s S S O S I Tl st s O

- - - - - +

The two highest-order bits (bits 8 and 9 above) indicate the nmaxi num
supported file size paraneters that the peer’s Saratoga

i npl enentation permts. Oher Saratoga packet types contain
variable-length fields that convey file sizes or offsets into a file
-- the file offset descriptors. These descriptors may be 16-bit,
32-bit, 64-bit, or 128-bit in |length, depending on the size of the
file being transferred and/or the integer types supported by the
sendi ng peer.

The indi cated bounds for the possible values of these bits are
summari zed bel ow

S S T e +
| Bit 8 | Bit 9 | Supported Field Sizes | Maximum File Size

S SRSy S SRSy U S U +
| O | O | 16 bits | 27216 - 1 octets.

| O | 1 | 16 or 32 bits | 2732 - 1 octets. |
| 1 | O | 16, 32, or 64 bits | 2764 - 1 octets.

| 1 | 1 | 16, 32, 64, or 128 bits | 27128 - 1 octets.

If a Saratoga peer advertises it is capable of receiving a certain
size of file, then it MJST al so be capable of receiving files sent
using small er descriptor values. This avoids overhead on small
files, while increasing interoperability between peers.

It is Iikely when sendi ng unbounded streans that a |arger offset
descriptor field size will be preferred to mnimse problens with

of fset sequence nunbers w apping. Protecting agai nst sequence nunber
wrapping is discussed in the STATUS secti on.

Wod, et al. Expi res Decenber 12, 2013 [Page 18]

I nternet-Draft Sar at oga June 2013

S R R o m e m o +
| Bit | Val ue | Meani ng |
+o e e - - S o m e - +
10	O	not able to pass bundles to a	ocal bundle
		agent; handles files only.	
10	1	handles files, but can al so pass marked bundl es	
		to a local bundle agent.	
S R R o m o e +

Bit 10 is reserved for DTN bundl e agent use, indicating whether the
sender is capable of handling bundles via a | ocal bundle agent. This
is described in [I-D. wood-dtnrg-saratoga].

+----- +o e e - - o e e e e e e e e e e e e e e e e e e o - +
| Bit | Value | Meaning |
S g S R o m e e e e e e e e e e e e e e e e e a o +
| 11 | O | not capable of supporting stream ng.

| 11 | 1 | capabl e of supporting stream ng. |
+----- S R o e o e e e e e e e e e e e e e e e e e emeaeao s +

Bit 11 is used to indicate whether the sender is capable of sending
and receiving continuous streans.

S S o +
| Bit 12 | Bit 13 | Capability and willingness to send files |
- - g +
| O | O | cannot send files at all. |
| O | 1 | invalid. |
| 1 | O | capabl e of sending, but not willing right now |
| 1 | 1 | capable of and willing to send files. |
I I o m e m - +
T S R o m e m o +
| Bit 14 | Bit | Capability and willingness to receive files |
| | 15 | |
S +o e e - - o m e - +

0 0 cannot receive files at all.

0 1 i nvalid.

0

rej ect METADATA or DATA packets.

I I
| . . _ |
| capable of receiving, but unwilling. WII |
I I
| capable of and willing to receive files. |

Wod, et al. Expi res Decenber 12, 2013 [Page 19]

I nternet-Draft Sar at oga June 2013

Also in the Flags field, bits 12 and 14 act as capability bits, while
bits 13 and 15 augnent those flags with bits indicating current
Wil lingness to use the capability.

Bits 12 and 13 deal wth sending, while bits 14 and 15 deal wth
receiving. |If bit 12 is set, then the peer has the capability to
send files. |If bit 14 is set, then the peer has the capability to
receive files. Bits 13 and 15 indicate willingness to send and
receive files, respectively.

A peer that is able to act as a file-sender MJST set the capability
bit 12 in all BEACONs that it sends, regardl ess of whether it is
willing to send any particular files to a particular peer at a
particular time. Bit 13 indicates the current presence of data to
send and a willingness to send it in general, in order to augnent the
capability advertised by bit 12.

If bit 14 is set, then the peer is capable of acting as a receiver,
al though it still mght not currently be ready or willing to receive
files (for instance, it may be low on free storage). This bit MJST
be set in any BEACON packets sent by nodes capable of acting as file-
receivers. Bit 15 augnents this by expresses a current general

w |l lingness to receive and accept files.

S e S SRS O U U e +
| Bit | Value | Meaning |
+----- +o e e - - o m e m +
| 16 | O | supports DATA transfers over UDP only. |
| 16 | 1 | supports DATA transfers over both UDP and UDP-Lite.
. e TN +

Bit 16 is used to indicate whether the sender is capable of sending
and receiving unreliable transfers via UDP-Lite.

e IR T . +
| Bit | Val ue | Meani ng |
S e R oo o e e e oo +
17	O	available free space is not advertised in
		this BEACON.
17	1	available free space is advertised in this
		BEACON.
S SRSy SRS U U +

Bit 17 is used to indicate whether the sender includes an optional
field in this BEACON packet that tells how nmuch free space is
avai lable. If bit 17 is set, then bits 18 and 19 are used to

Wod, et al. Expi res Decenber 12, 2013 [Page 20]

I nternet-Draft Sar at oga June 2013

indicate the size in bits of the optional free-space-size field. |If
bit 17 is not set, then bits 18 and 19 are zero.

- - o +
| Bit 18 | Bit 19 | Size of free space field

ey ey T +
O	O	16 bits.
O	1	32 bits.
1	O	64 bits.
1	1	128 bits.
S S Y +

The free space field size can vary as indicated by a varying-size
field indicated in bits 18 and 19 of the flags field. Unlike other
of fset descriptor use where the value in the descriptor indicates a
byte or octet position for retransmssion, or gives a file size in
bytes, this particular field indicates the available free space in
Kl BI BYTES (Ki B, nultiples of 1024 octets), rather than octets.

Avail able free space is rounded down to the nearest Ki B, so
advertising zero neans that less than 1KiB is free and avail abl e.
Advertising the maxi mum si ze possible in the field nmeans that nore
free space than that is available. Wile this field is intended to
be scalable, it is expected that 32 bits (up to 4TiB) wll be nost
conmon in use.

A BEACON uni cast to an individual peer MAY choose to indicate the
free space avail able for use by that particular peer, and MAY
indicate capabilities only available to that particul ar peer,
overriding or supplenmenting the properties advertised to all |ocal
peers by nulticast BEACONs.

Any type of host identifier can be used in the endpoint identifier
field, as long as it is a reasonably unique string within the range
of operational deploynent. This field enconpasses the renai nder of
t he packet, and m ght contain non-UTF-8 and/or null characters.

4.2. REQUEST

A REQUEST packet is an explicit command to performeither a _put_,
_get _, _getdir_, or _delete_ session.

For mat

Wod, et al. Expi res Decenber 12, 2013 [Page 21]

I nternet-Draft Sar at oga June 2013

0 1 2 3
01234567890123456789012345678901
B il a i S I o I i ot S S S I S S S S it o

|0 O 1] Type | FI ags | Request Type
e i R R e e e el I S R R R R e S il I I S R R R R
| Session Id |
B T T i S S i S T i s T e S S S S S e
| variable-length File Path ... /
B il a i S I o I i ot S S S I S S S S it o
/ /
e i R R e e e el I S R R R R e S il I I S R R R R
/ | nul | byte | /
B T T i S S i S T i s T e S S S S S e
/ vari abl e-1 ength Authentication Field (optional) |

B e i i T o e e S e s tils sl sl it st ST S SR SRR S S SR

wher e
o e - o m e m +
| Field | Description |
R o m e +
Type 1
Fl ags provi de additional information about the requested

	filel/operation; see table below for definition.
Request	identifies the type of request being nade; see
I I I
I I I
I I I
I I I

Type tabl e further bel ow for request val ues.
I d uniquely identifies the session between two peers.
File Path the path of the requested file/directory follow ng
t he rul es descri bed bel ow.
S o +

The 1d that is used during sessions serves to uniquely associate a
gi ven packet wth a particular sessions. This enables multiple
simul taneous data transfer or request/status sessions between two
peers, with each peer deciding howto nultiplex and prioritise the
parallel flows it sends. The Id for a session is selected by the
initiator so as to not conflict with any other in-progress or recent
sessions with the sane host. This Id should be unique and generated
using properties of the file, which will remain constant across a
host reboot. The 3-tuple of both host identifiers and a carefully-
generated session Id field can be used to uniquely index a particular
session’s state.

The REQUEST flags field, expanding a line of flag bits wth
descriptions of each flag, is as follows:

Wod, et al. Expi res Decenber 12, 2013 [Page 22]

I nternet-Draft Sar at oga June 2013

REQUEST FI ags

1 2 3
1234567890123456789012345678901
S e i i e e e e o S o SR SR B
| 0] O] 1] => Version field: Saratoga version 1
| | 0] 0] 0] 0] 1| => Type field: REQUEST Frane designation
| | X| X| => Descriptor size
| | X| => Supports bundl es?
| | Xl => Supports stream ng?
| | X| => Supports UDP Lite?
| Request Type field <= | X| X| X| X| X| X| X] X
i S S T s S S i i NP S

In the Flags field, the bits labelled 8 and 9 in the figure above

i ndi cate the maxi num supported file length fields that the peer can
handl e, and are interpreted exactly as the bits 8 and 9 in the BEACON
packet described above. Bits 12 and 13, and 14 and 15, indicate
capability and willingness to send and receive files, as described
above. Making a _get_request would require that the requester is
capable and willing to receive files. The remaining defined

i ndi vidual bits are as summari sed as foll ows:

S SRS S RO U U +
| Bit | Val ue | Meani ng |
+o e e - - R o m e m +
| 10 | O | The requester cannot handl e bundl es |ocally.

10	1	The requester can handl e bundl es.
11	O	The requester cannot receive streans.
11	1	The requester is also able to receive
		streans.
16	O	The requester is able to receive DATA over
		UDP only.
16	1	The requester is also able to receive DATA
		over UDP-Lite.
S SRSy SRS U U +

The Request Type field is an octet that contains a val ue indicated
the type of request being nade. Possible values are:

the name of the file to be sent.

S U U U S +
| Val ue | Meani ng |
S g +
O	No action is to be taken; simlar to a BEACO\
1	A get session is requested. The File Path field holds

Wod, et al. Expi res Decenber 12, 2013 [Page 23]

I nternet-Draft Sar at oga June 2013

	A _put_ session is requested. The File Path field
	suggests the nanme of the file that will be delivered
	only after an OK STATUS is received fromthe file
	receiver.
	A get_ session is requested, and once received
	successfully, the original copy should be deleted. The
	File Path field holds the name of the file to be sent.
	(This get+delete is knowmn as a 'take’.)
4	A _put_ session is requested, and once sent
	successfully, the original copy will be deleted. The
	File Path field holds the nane of the file to be sent.
	(This put+delete is known as a 'give'.)
	A _delete_ session is requested, and the File Path
	field specifies the nane of the file to be del eted.
	A _getdir_ session is requested. The File Path field
	holds the name of the directory or file on which the
	directory record is created.

The File Path portion of a _get_ packet is a null-term nated UTF-8
encoded string [RFC3629] that represents the path and base file nane
on the file-sender of the file (or directory) that the file-receiver
Wi shes to performthe get , getdir_, or _delete_ operation on.

| npl ement ati ons SHOULD only send as many octets of File Path as are
needed for carrying this string, although sone inplenentations NAY
choose to send a fixed-size File Path field in all REQUEST packets
that is filled with null octets after the |last UTF-8 encoded octet of
the path. A maxi num of 1024 octets for this field, and for the File
Path fields in other Saratoga packet types, is used to limt the
total packet size to within a single IPv6 m nimum MU (m nus sone
paddi ng for network | ayer headers), and thus avoid the need for
fragnentation. The 1024-octet maxi mum applies after UTF-8 encodi ng
and null term nation.

As in the standard Internet File Transfer Protocol (FTP) [RFC0959],
for path separators, Saratoga allows the |ocal nam ng convention on
the peers to be used. There are security inplications to processing
these strings without sonme intelligent filtering and checking on the
filesystemitens they refer to. See also the Security Considerations
section later within this docunent.

If the File Path field is enpty, i.e. is a null-termnated zero-

l ength string one octet long, then this indicates that the file-
receiver is ready to receive any file that the file-sender would Iike
to send it, rather than requesting a particular file. This allows
the file-sender to determne the order and selection of files that it
would i ke to forward to the receiver in nore of a "push" manner. O

Wod, et al. Expi res Decenber 12, 2013 [Page 24]

I nternet-Draft Sar at oga June 2013

course, file retrieval could also follow a "pull" manner, with the
file-receiving host requesting specific files fromthe fil e-sender.
This may be desirable at tinmes if the file-receiver is | ow on storage
space, or other resources. The file-receiver could also use the
Saratoga _getdir_ session results in order to select small files, or
make ot her optim zations, such as using its |ocal know edge of
contact tinmes to pick files of a size likely to be able to be
delivered conpletely. File transfer through pushing sender-sel ected
files inplenments delivery prioritization decisions nmade solely at the
Saratoga fil e-sending node. File transfer through pulling specific
recei ver-selected files inplenments prioritization involving nore
participation fromthe Saratoga file-receiver. This is how Saratoga
i npl enments Quality of Service (QoS).

The null-termnated File Path string MAY be foll owed by an opti onal
Aut hentication Field that can be used to validate the REQUEST packet.
Any value in the Authentication Field is the result of a conputation
of packet contents that SHOULD include, at a m ninum source and
destination | P addresses and port nunbers and packet length in a

' pseudo- header’, as well as the content of all Saratoga fields from
Version to File Path, excluding the predictable null-term nation
octet. This Authentication Field can be used to all ow t he REQUEST
receiver to discrimnate between other peers, and permt and deny
vari ous REQUEST actions as appropriate. The format of this field is
unspecified for |ocal use.

Conmbi ned get +del ete (take) and put +del ete (give) requests should only
have the delete carried out once the deleting peer is certain that
the file-receiver has a good copy of the file. This may require the
file receiver to verify checksuns before sending a final STATUS
message acknow edgi ng successful delivery of the final DATA segnent,
or aborting the transfer if the checksumfails. |If the transfer
fails and an error STATUS is sent for any reason, the file should not
be del et ed.

REQUEST packets may be sent nulticast, to | earn about all |istening
nodes. A nmulticast _get_request for a file that elicits nultiple
METADATA or DATA responses should be foll owed by unicast STATUS
packets with status errors cancelling all but one of the proposed
transfers. File tinmestanps in the Directory Entry can be used to
sel ect the nost recent version of an offered file, and the host to
fetch it from

If the receiver already has the file at the expected file path and is
requesting an update to that file, REQUEST can be sent after a
METADATA advertising that file, to allow the sender to determ ne

whet her a replacenent for the file should be sent.

Wod, et al. Expi res Decenber 12, 2013 [Page 25]

I nternet-Draft Sar at oga June 2013

Del ete requests are ignored for files currently being transferred.
4.3. METADATA

METADATA packets are sent as part of a data transfer session (_get |,
getdir, and _put_). A METADATA packet says how large the file is
and what its nane is, as well as what size of file offset descriptor
is chosen for the session. METADATA packets are optional, but SHOULD
be sent. A METADATA packet that is received MIST be parsed. A
METADATA packet is normally sent at the start of a DATA transfer, but
can be repeated throughout the transfer. Sending METADATA at the
start if using checksuns allows for increnental checksum cal cul ation
by the receiver, and is a good idea.

For mat

0 1 2 3
01234567890123456789012345678901
B T T i S S i S T i s T e S S S S S e
|0 O 1] Type | Fl ags | Sum eng| Sunt ype|
B il a i S I o I i ot S S S I S S S S it o
| Session |Id |
e i R R e e e el I S R R R R e S il I I S R R R R

| /

/ /

/ exanpl e error-detection checksum (128-bit M5 shown) /

/ /

/ |
e i R R e e e el I S R R R R e S il I I S R R R R

| /

/ single Directory Entry describing file /

/ (variabl e | ength) /

/ I

B s T T S I T et i S o S e T S L Yy
wher e

S g +
| Field | Description |
S T +
Type	2 o
Fl ags	indicate additional bool ean netadata about a
	file.
Sum eng	indicates the length of a checksum as a multiple
	of 32 bits.
Sumtype	indicates whether a checksumis present after the

| | |

Id, and what type it is.

Wod, et al. Expi res Decenber 12, 2013 [Page 26]

I nternet-Draft Sar at oga June 2013

Id	1dentifies the session that this packet
	descri bes.
Checksum	an exanpl e included checksum covering file
	contents.
Directory	describes file systeminformation about the file,

| Entry | including file length, file tinmestanps, etc.; the

| | format is specified in Section 5. |
e oo o e e oo +

The first octet of the Flags field is currently specified for use.
The later two octets are reserved for future use, and MJUST be set to
zero.

The METADATA flags field is as follows, expanding a |ine of flag bits
wi th expl anations of each field:

METADATA Fl ags

0 1 2 3
01234567890123456789012345678901
I ik aie: ST S S I I i o ST I S S S I il st e S
| 0] O] 1| => Version Field: Saratoga version 1

| | 0] 0] O] 1] O] => Type field: METADATA Frane designation

| | X| X| => Descri ptor

| | X| Xl => File/bundle/streanidir record

| | X => Transfer in progress?

| | X| => UDP Lite permtted?

| Error detection checksumtype <=| X| X| X| X
i i i i Sl S e E e E SR s

In the Flags field, the bits labelled 8 and 9 in the figure above

i ndicate the exact size of the offset descriptor fields used in this
particul ar packet and are interpreted exactly as the bits 8 and 9 in
t he BEACON packet described above. The value of these bhits

determ nes the size of the File Length field in the current packet,
as well as indicating the size of the offset fields used in DATA and
STATUS packets within the session that will follow this packet.

Fommm e T T +
| Bité 10 | Bité 11 | Type of transfer |
T - T S +
0 0 afileis being sent.
0 1 the file being sent should be

Record

I
| ! :
| interpreted as a Directory
|
| a bundle is being sent.

Wod, et al. Expi res Decenber 12, 2013 [Page 27]

I nternet-Draft Sar at oga June 2013

| 1 | 1 | an indefinite-length streamis |
| | | being sent. |

Also inside the Flags field, bits 10 and 11 indicate what is being
transferred - a file, special directory record file that contains one
or nore directory entries, bundle, or stream The value 01 indicates
t hat the METADATA and DATA packets are being generated in response to
a _getdir_ REQUEST, and that the assenbl ed DATA contents shoul d be
interpreted as a Directory Record containing directory entries, as
defined in Section 5.

S R R o m o e +
| Bit | Val ue | Meani ng |
B R o m e +
| 12 | O | This transfer is in progress. |
| 12 | 1 | This transfer is no longer in progress, and has |

| I | been termnated. |

Bit 12 indicates whether the transfer is in progress, or has been
termnated by the sender. It is normally set to 1 only when METADATA
is resent to indicate that a streamtransfer has been ended.

| | This file's content MJST be delivered reliably

	without errors using UDP.
1	This file's content MAY be delivered
	unreliably, or partly unreliably, where errors
	are tolerated, using UDP-Lite.

Wod, et al. Expi res Decenber 12, 2013 [Page 28]

I nternet-Draft Sar at oga June 2013

Bit 13 indicates whether the file nust be sent reliably or can be
sent at |east partly unreliably, using UDP-Lite. This flag SHOULD
only be set if the originator of the file knows that at |east sone of
the file content is suitable for sending unreliably and is robust to
errors. This flag reflects a property of the file itself. This flag
may still be set if the immediate file-receiver is only capabl e of
UDP delivery, on the assunption that this preference will be
preserved for later transfers where UDP-Lite transfers may be taken
advant age of by senders with know edge of the internal file
structure. The file-sender may know that the receiver is capabl e of
handling UDP-Lite, either froma _get_ REQUEST, from exchange of
BEACONs, or a-priori.

The high four bits of the Flags field, bits 28-31, are used to
indicate if an error-detection checksum has been included in the
METADATA for the file to be transferred. Here, bits 0000 indicate
that no checksumis present, with the inplicit assunption that the
application will do its own end-to-end check. Oher values indicate
the type of checksumto use. The choice of checksum depends on the
avai | abl e computing power and the length of the file to be
checksummed. Longer files require stronger checksuns to ensure
error-free delivery. The checksumof the file to be transferred is
carried as shown, wth a fixed-length field before the varying-Iength
File Length and File Nanme information fields.

Assi gned val ues for the checksumtype field are:

O	No checksumis provided.
1	32-bit CRC32 checksum suitable for small files.
2	128-bit MD5 checksum suitable for larger files.
3	160-bit SHA-1 checksum suitable for larger files

| | but slower to process than MD5. |

The |l ength of the checksum cannot be inferred fromthe checksumtype
field, particularly for unknown checksumtypes. The next-hi ghest
four bits of the 32-bit word holding the Flags, bits 24-27, indicate
the length of the checksumbit field, as a nultiple of 32 bits.

e oo o e oo +
| Exanple Value (0-15) | Use

o o m e e e e e e e e e e e e e m +
| O | No checksumis provided. |
| 1 | 32-bit checksumfield, e.g. CRC32. |

Wod, et al. Expi res Decenber 12, 2013 [Page 29]

I nternet-Draft Sar at oga June 2013

| 4 | 128-bit checksumfield, e.g. MD-. |
5 | 160-bit checksumfield, e.g

For a 32-bit CRC, the length field holds 1 and the type field holds
1. For MD5, the length field holds 4 and the type field holds 2.
For SHA-1, the length field holds 5 and the type field holds 3.

It is expected that higher values will be allocated to new and
stronger checksuns able to better protect larger files. These
checksuns can be expected to be longer, with | arger checksum | ength
fields.

A checksum SHOULD be included for files being transferred. The
checksum SHOULD be as strong as possible. Stream ng of an
indefinite-length stream MJUST set the checksumtype field to zero.

It is expected that a m ninum of the MD5 checksumw || be used,

unl ess the Saratoga inplenentation is used exclusively for snal
transfers at the low end of the 16-bit file descriptor range, such as
on | ow perform ng hardware, where the weaker CRC-32c checksum can
suffice.

The CRC32 checksumis conputed as described for the CRC-32c al gorithm
given in [RFC3309].

The MD5 Sumfield is generated via the MD5 al gorithm[RFC1321],
conputed over the entire contents of the file being transferred. The
file-receiver can conpute the MD5 result over the reassenbl ed
Sar at oga DATA packet contents, and conpare this to the METADATA s MD5
Sumfield in order to gain confidence that there were no undetected
protocol errors or UDP checksum weaknesses encountered during the
transfer. Although MD5 is known to be | ess than optimal for security
uses, it remains excellent for non-security use in error detection
(as is done here in Saratoga), and has better perfornmance

i nplications than cryptographically-stronger alternatives given the
limted avail abl e processing of many use cases [RFC6151].

Checksuns may be privately keyed for local use, to allow transm ssion
of authenticated or encrypted files delivered in DATA packets. This
has limtations, discussed further in Section 8 at end.

Use of the checksumto ensure that a file has been correctly rel ayed
to the receiving node is inportant. A provided checksum MJST be
checked agai nst the received data file. |f checksumverification
fails, either due to corruption or due to the receiving node not
having the right key for a keyed checksunm), the file MJST be

Wod, et al. Expi res Decenber 12, 2013 [Page 30]

I nternet-Draft Sar at oga June 2013

di scarded. |If the file is to be relayed onwards |ater to another
Sar at oga peer, the netadata, including the checksum MJST be retained
with the file and SHOULD be retransm tted onwards unchanged with the
file for end-to-end coverage. |If it is necessary to reconpute the
checksum or encrypted data for the new peer, either because a
different key is in use or the existing checksumalgorithmis not
supported, the new checksum MUST be conputed before the old checksum
is verified, to ensure overl appi ng checksum coverage and det ect
errors introduced in file storage.

METADATA can be used as an indication to update copies of files. |If
the METADATA is in response to a _get_ REQUEST including a file
record, and the record information for the held file matches what the
requester already has, as has been indicated by a previously-received
METADATA advertisenment fromthe requester, then only the METADATA is
sent repeating this information and verifying that the file is up to
date. |If the record information does not match and a newer file can
be supplied, the METADATA begins a transfer with foll om ng DATA
packets to update the file.

4.4. DATA

A series of DATA packets formthe main part of a data transfer
session (_get , _put_, or _getdir_). The payloads constitute the
actual file data being transferred.

For mat

0 1 2 3
01234567890123456789012345678901
i i i S S I b s i o S S S S e A
0 1| Type | Fl ags |
B i e o T T e S e it sl T I S i S e e S e e 2
Session Id |
i e e S i S e e i ol IR NI R S R S S e

_—— e~~~

B i me s i i T o S i e i i T s i ST S S S
O fset (descriptor)]

i o S S il St S S S it Sk NP S
Payl oad data. .. /1

+-

| O

+-

|

+-

| _ _ _ _

/ Ti mest anp/ nonce i nformation (optional)
/

/

+-

[

+-

|

B i S S S e T S i e i ik i A i e i S Sy

wher e

Wod, et al. Expi res Decenber 12, 2013 [Page 31]

I nternet-Draft Sar at oga June 2013

U U U U U +
| Field | Description |
o e e e e e e e e e - o m e m +
Type 3
Fl ags are descri bed bel ow.

I I
| identifies the session to which this packet |
| bel ongs. |
Ti mest anp/ nonce | is an optional 128-bit field providing |
| timng or identification information unique

I I
I I
I I
I I

to this packet. See Appendix A for details.

O fset the offset in octets to the |ocation where
the first byte of this packet’s payload is
to be witten.
o e e e e e e e o e m e o e +

The DATA packet has a m ninum size of ten octets, using sixteen-bit
descriptors and no tinestanps.

DATA packets are normally checked by the UDP checksumto prevent
errors in either the header or the payload content. However, for
transfers that can tolerate content errors, DATA packets MAY be sent
using UDP-Lite. |If UDP-Lite is used, the file-sender nmust know t hat
the file-receiver is capable of handling UDP-Lite, and the file
contents to be transferred should be resilient to errors. The UDP-
Lite checksum MUST protect the Saratoga headers, up to and including
the offset descriptor, and MAY protect nore of each packet’s payl oad,
depending on the file-sender’s know edge of the internal structure of
the file and the file's reliability requirenents.

The DATA flags field is as follows, expanding a line of flag bits
wi th expl anati ons of each field:

DATA Fl ags

0 1 2 3
01234567890123456789012345678901
B T e e e S e i s ST o s s sl it S S S
| 0| O] 1] => Version Field: Saratoga version 1

| | 0] 0] O] 1] 1] => Type field: DATA Frane designation

| | X] X| => Descri ptor

| | X| Xl => File/bundle/streanidir record

| | X| => Includes tinestanp?

| | X| => STATUS request ed

| | X => End of Data (EOD) set

I ik aie: ST S S I I i o ST I S S S I il st e S

Wod, et al. Expi res Decenber 12, 2013 [Page 32]

I nternet-Draft Sar at oga June 2013

		16-bit descriptors are in use
		inthis transfer.
		32-bit descriptors are in use
		inthis transfer.
1	O	64-bit descriptors are in use
		in this transfer.
		128-bit descriptors are in use
		inthis transfer.

Flag bits 8 and 9 are set to indicate the size of the offset
descriptor as described for BEACON and METADATA packets, so that each
DATA packet is self-describing. This allows the DATA packet to be
used to construct a file even when an initial METADATA is |ost and
must be resent. The flag values for bits 8 and 9 MIST be the sane as
i ndicated in any expected METADATA packet .

o e e a e o - o e e e - o m e e e e e e e e e e e e e m +
| Bit 10 | Bit 11 | Type of transfer |
I I T +
O	O	a file is being sent.
O	1	the file being sent should be
		interpreted as a directory
		record.
1	O	a bundle is being sent.
1	1	an indefinite-length streamis
		being sent.
i e o +

Also inside the Flags field, bits 10 and 11 indicate what is being
transferred - a file, special file that contains a Directory Records,
bundl e, or stream The value 01 indicates that the METADATA and DATA
packets are being generated in response to a _getdir_ REQUEST, and
that the assenbl ed DATA contents should be interpreted as a Directory
Record containing directory entries, as defined in Section 5. The
flag values for bits 10 and 11 MJST be the sane as indicated in the
initial METADATA packet.

| 12 | O | This packet does not include an optional |
| | | timestanp/nonce field. |

Wod, et al. Expi res Decenber 12, 2013 [Page 33]

I nternet-Draft Sar at oga June 2013

| 12 | 1 | This packet includes an optional |
| | | timestanp/nonce field. |

Flag bit 12 indicates that an optional packet tinmestanp/nonce is
carried in the packet before the offset field. This packet tinestanp
/nonce field is always sixteen octets (128 bits) long. Tinmestanps
can be useful to the sender even when the receiver does not
understand them as the receiver can sinply echo any provided

ti mestanps back, as specified for STATUS packets, to allow the sender
to nmonitor flow conditions. Packet tinmestanps are particularly
useful when stream ng. Packet tinmestanps are discussed further in
Appendi x A.

+----- B o m e e e e e e e e e e e m - +
| Bit | Value | Meaning |
+-- - - - S R o m e e e e e a o +
| 15 | O | No response is requested. |
| 15 | 1 | A STATUS packet is requested.

+----- +o e e - - o e e e e e e e e e e e m - +

Wthin the Flags field, if bit 15 of the packet is set, the file-
receiver is expected to imedi ately generate a STATUS packet to
provide the file-sender with up-to-date information regarding the
status of the file transfer. This flag is set carefully and rarely.
This flag nay be set periodically, but infrequently. Asymretric
links with constrai ned backchannels can only carry a limted anount
of STATUS packets before ack congestion becones a problem This flag
SHOULD NOT be set if an unreliable streamis being transferred, or if
multicast is in use. This flag SHOULD be set periodically for
reliable file transfers, or reliable streaming. The file-receiver
MUST respond to the flag by generating a STATUS packet, unless it
knows that doing so will lead to | ocal congestion, in which case it
may choose to send a later voluntary STATUS nessage. Voluntary
STATUS packets MAY be sent if a request for one has not been nmade
within an appropriate tine.

+----- B o m e e e e e e e e e e e e e m +
| Bit | Value | Meaning |
+-- - - - S R o m e e e e e e e e e e e e e e e e e e o +
| 16 | O | Normal use. |
| 16 | 1 | The EOD End of Data flag is set.

+----- +o e e - - o e e e e e e e e e e e e e m - +

Wod, et al. Expi res Decenber 12, 2013 [Page 34]

I nternet-Draft Sar at oga June 2013

The End of Data flag is set in DATA packets carrying the |ast byte of
atransfer. This is particularly useful for streans and for the rare
Saratoga i npl enentations that do not send or receive METADATA.

| mredi ately follow ng the DATA header is the payl oad, which consunes
the remai nder of the packet and whose length is inplicitly defined by
the end of the packet. The payload octets are directly formed from

t he continuous octets starting at the specified Ofset in the file
being transferred. No special coding is perforned. A zero-octet

payl oad length is allowable, and a single DATA packet indicating zero
payl oad, consisting only of a header with the ECD flag set, nmay be
useful to sinply elicit a STATUS response fromthe receiver

The length of the Ofset fields used within all DATA packets for a
gi ven session MJST be consistent with the Iength indicated by bits 8
and 9 of any acconpanyi ng METADATA packet. |f the METADATA packet
has not yet been received, a file-receiver that supports METADATA
MJST indicate that it has not been received via a STATUS packet, and
MAY choose to enqueue received DATA packets for |ater processing
after the METADATA arrives.

4.5. STATUS

The STATUS packet type is the single acknow edgenment nethod that is
used for feedback froma Saratoga receiver to a Saratoga sender to

i ndi cate session progress, both as a response to a REQUEST, and as a
response to a DATA packet when demanded or vol unt eer ed.

When responding to a DATA packet, the STATUS packet MAY, as needed,

i ncl ude sel ective acknow edgenment (SNACK) 'hole’” information to
enabl e transm ssion (usually re-transm ssion) of specific sets of
octets within the current session (called "holes"). This
"holestofill’ information can be used to clean up | osses (or indicate
no |l osses) at the end of, or during, a session, or to efficiently
resune a transfer that was interrupted in a previous session.

For mat

Wod, et al. Expi res Decenber 12, 2013 [Page 35]

I nternet-Draft Sar at oga June 2013

0 1 2 3
01234567890123456789012345678901
B il a i S I o I i ot S S S I S S S S it o
|0 O 1] Type | FI ags | St at us |
T S i i S T i St S S ik it N S
| Session Id |
T i S S i S I S S R o h

| /

/ Ti mest anp/ nonce i nformati on (optional) /

/ /

/ |
i T e S S il R S e e e S S e o e e S S

[Progress Indicator (descriptor)]

I i S I T T s S S O S I Tl st s O

[I n- Response-To (descriptor)]

I ik aie: ST S S I I i o ST I S S S I il st e S

| (possi bly, several Hole fields) /

/ C. /

B T T i S S i S T i s T e S S S S S e
wher e

U o +
| Field | Description |
Fom e e e e e oo oo o +

Type 4

FI ags are defined bel ow.

I d identifies the session that this packet
bel ongs to.

St at us a value of 00 indicates the transfer is
sucessful ly proceeding. Al other values are
errors termnating the transfer, expl ained
bel ow.

Zer o- Pad an octet fixed at 00 to allow later fields to
be conveniently aligned for processing.
an optional fixed 128-bit field, that is only

(optional) present and used to return a packet tinestanp

if the tinmestanp flag is set. |If the STATUS
packet is voluntary and the voluntary flag is
set, this should repeat the tinmestanp of the
DATA packet containing the highest offset
seen. |f the STATUS packet is in response to
a mandatory request, this will repeat the

ti mestanp of the requesting DATA packet. The
file-sender nmay use these tinestanps to
estimate | atency. Packet tinestanps are

I
I
I
I
I
I
I
I
I
I
| Timestanp
I
I
I
I
I
I
I
I
I
I
| particularly useful when stream ng. There are

Wod, et al. Expi res Decenber 12, 2013 [Page 36]

I nternet-Draft Sar at oga June 2013

speci al considerations for stream ng,

di scussed further below, to protect against
the ambi guity of w apped of fset descriptor
sequence nunbers. Packet tinestanps are

di scussed further in Appendi x A

the of fset of the | owest-nunbered octet of the
file not yet received, and expected.

Pr ogress

I ndi cat or
(descri ptor)

I n- Response-To
(descri ptor)

the offset of the octet follow ng the DATA
packet that generated this STATUS packet, or
the of fset of the next expected octet
foll ow ng the highest DATA packet seen if this
STATUS is generated voluntarily and the
voluntary flag is set.

i ndi cations of offset ranges of m ssing data,
defi ned bel ow.

The STATUS packet has a m nimum size of twelve octets, using sixteen-
bit descriptors, a progress indicator but no Hole fields, and no

ti mestanps. The progress indicator is always zero when responding to
requests that may initiate a transfer.

The Id field is needed to associ ate the STATUS packet with the
session that it refers to.

The Progress Indicator and I n-Response-To fields mark the 'l eft edge’
and 'right edge’ of the inconplete working area where holes are being
filled in. |If there are no holes, these fields will hold the sane
value. At the start of a transfer, both fields begin by expecting
octet zero. Wien a transfer has conpl eted successfully, these fields
will contain the length of the file.

The STATUS flags field is as follows, expanding a |line of flag bits
wi th expl anations of each field:

STATUS Fl ags

Wod, et al. Expi res Decenber 12, 2013 [Page 37]

I nternet-Draft Sar at oga June 2013

1 2 3
1234567890123456789012345678901
B il a i S I o I i ot S S S I S S S S it o
| 0] O] => \ersion Field: Saratoga version 1
| 0] 0] 1| 0| O] => Type field: STATUS Frane desi gnation
| | X| X| => Descri ptor
| | X| => Tinmestanp included?
| | Xl => METADATA received?
I
I
|
+

o
- +

| X => Hole information conpl ete?
| X => Vol untary STATUS nessage?
Status code <= | X| X| X] X| X| X] X| X|
s S S S S e s i i w S e

Flags bits 8 and 9 are set to indicate the size of the offset
descriptor as described for BEACON and METADATA packets, so that each
STATUS packet is self-describing. The flag values here MIST be the
same as indicated in the initial METADATA and DATA packets.

O her bits in the Flags field are defined as:

+----- B g +
| Bit | Value | Meaning |
+-- - - - S R o m m e a o +
| 12 | O | This packet does not include a tinestanp field. |
| 12 | 1 | This packet includes an optional tinmestanp field. |
+----- +o e e - - g +

Flag bit 12 indicates that an optional sixteen-byte packet tinmestanp/
nonce field is carried in the packet before the Progress Indicator
descriptor, as discussed for the DATA packet format. Packet

ti mestanps are discussed further in Appendi x A

+--- - S o m e m e e e e e e e e e e e e e e e e e +
| Bit | Value | Meaning |
+-- - - - A oo e o e o e e e e e e e e e ee e +
| 13 | O | file' s METADATA has been received. |
| 13 | 1 | file s METADATA has not been received. |
+----- B e +

If bit 13 of a STATUS packet has been set to indicate that the
METADATA has not yet been received, then any METADATA SHOULD be
resent. This flag should nornmally be clear.

A receiver SHOULD tolerate | ost METADATA that is later resent, but
MAY insist on receiving METADATA at the start of a transfer. This is

Wod, et al. Expi res Decenber 12, 2013 [Page 38]

I nternet-Draft Sar at oga June 2013

done by responding to early DATA packets with a voluntary STATUS
packet that sets this flag bit, reports a status error code 10, sets
the Progress Indicator field to zero, and does not i ncl ude
HOLESTOFI LL i nf ormati on.

		this packet contains the conplete current set of
		holes at the file-receiver.
14	1	this packet contains inconplete hole-state; holes
		shown in this packet should suppl ement other
		1nconplete hole-state known to the file-sender.

Bit 14 of a ’'holestofill’ STATUS packet is only set when there are
too many holes to fit within a single STATUS packet due to MIuU
[imtations. This causes the hole Iist to be spread out over
mul ti pl e STATUS packets, each of which conveys distinct sets of
holes. This could occur, for instance, in a large file _put_
scenario with a | ong-del ay feedback | oop and poor physical |ayer
conditions. These nultiple STATUS packets will share |In-Response-To
information. \When |osses are |ight and/or hole reporting and repair
is relatively frequent, all holes should easily fit within a single
STATUS packet, and this flag will be clear. Bit 14 should nornmally
be cl ear.

In sone rare cases of high loss, there may be too nmany holes in the
received data to convey within a single STATUS s size, which is
l[imted by the link MU size. In this case, nmultiple STATUS packets
may be generated, and Flags bit 14 should be set on each STATUS
packet accordingly, to indicate that each packet holds inconplete
results. The conplete group of STATUS packets, each containing

i nconplete information, will share commobn | n-Response-To i nformation
to distinguish themfromany earlier groups.

S Fommmm - o +
| Bit | Value | Meaning |
+----- B o m e m +
| 15 | O | This STATUS was requested by the fil e-sender.

| 15 | 1 | This STATUS is sent voluntarily. |
R Sy S SRSy U U +

Flag bit 15 indicates whether the STATUS is sent voluntarily or due
to a request by the sender. It affects content of the |In-Response-To
ti mestanp and descriptor fields.

Wod, et al. Expi res Decenber 12, 2013 [Page 39]

I nternet-Draft Sar at oga June 2013

In the case of a transfer proceeding normally, imediately foll ow ng
t he STATUS packet header shown above, is a set of "Hole" definitions
i ndi cating any | ost packets. Each Hole definition is a pair of
unsigned integers. For a 32-bit offset descriptor, each Hol e
definition consists of two four-octet unsigned integers:

Hol e Definition Formt
0 1 2 3

01234567890123456789012345678901
e e i e e E t s o R RN SR S

[offset to start of hole (descriptor)]
B i T S o S T i A S e S S S S
[offset to end of hole (descriptor)]

I T S S T ks i S S S e S S e T Tk sl as i S S

The start of the hole neans the offset of the first unreceived byte
in that hole. The end of the hole nmeans the | ast unreceived byte in
t hat hol e.

For 16-bit descriptors, each Hole definition holds two two-octet
unsigned integers, while Hole definitions for 64- and 128-bit
descriptors require two eight- and two sixteen-octet unsigned

i nt egers respectively.

Hol es MJUST be listed in order, | owest values first.

Since each Hole definition takes up eight octets when 32-bit offset

| engths are used, we expect that well over 100 such definitions can
fit in a single STATUS packet, given the IPv6 m ninum MIU. (There
may be cases where there is a very constrai ned backchannel conpared
to the forward channel stream ng DATA packets. For these cases,

i mpl enmentations m ght deliberately request |arge holes that span a
nunber of smaller holes and internedi ate areas where DATA has al ready
been received, so that previously-received DATA is deliberately
resent. This aggregation of separate hol es keeps the backchannel
STATUS packet size down to avoid backchannel congestion.)

A ’voluntary’ STATUS can be sent at the start of each session. This
indicates that the receiver is ready to receive the file, or

i ndicates an error or rejection code, described below. A STATUS

i ndicating a successfully established transfer has a Progress

I ndi cator of zero and an |In-Response-To field of zero.

On receiving a STATUS packet, the sender SHOULD prioritize sending

the necessary data to fill those holes, in order to advance the
Progress Indicator at the receiver.

Wod, et al. Expi res Decenber 12, 2013 [Page 40]

I nternet-Draft Sar at oga June 2013

4.5.1. FErrors and aborting sessions

In the case of an error causing a session to be aborted, the Status
field holds a code that can be used to explain the cause of the error
to the other peer. A zero value indicates that there have been no
significant errors (this is called a "success STATUS'" within this
docunent), while any non-zero val ue neans the session should be
aborted (this is called a "failure STATUS").

o e e e e e oo g +
| Error Code | Meani ng |
| Status Val ue | |
S U +
0x00	Success, No Errors.
O0x01	Unspecified Error.
0x02	Unable to send file due to resource
	constraints.
0x03	Unable to receive file due to resource
	constraints.
0x04	File not found.
0x05	Access Deni ed.
0x06	Unknown Id field for session.
O0x07	Dd not delete file.
0x08	File length is I onger than receiver can
	support.
0x09	File offset descriptors do not match expected
	use or file Iength.
OxO0A	Unsupported Saratoga packet type received.
Ox0B	Unsupported Request Type received.
O0x0C	REQUEST is now term nated due to an internal
	timeout.
OxO0D	DATA flag bits describing transfer have
	changed unexpectedly.
OxOE	Receiver is no longer interested in receiving
	this file.
OxOF	File is in use.
0x10	METADATA required before transfer can be
	accept ed.
Ox11	A STATUS error nessage has been received
	unexpectedly, so REQUEST is term nated.
P T TN +

The recipient of a failure STATUS MJUST NOT try to process the
Progress Indicator, In-Response-To, or Hole offsets, because, in sone
types of error conditions, the packet’s sender nay not have any way
of setting themto the right length for the session.

Wod, et al. Expi res Decenber 12, 2013 [Page 41]

I nternet-Draft Sar at oga June 2013

5. The Directory Entry
Directory Entries have two uses w thin Saratoga:

1. Wthin a METADATA packet, a Directory Entry is used to give
i nformati on about the file being transferred, in order to
facilitate proper reassenbly of the file and to help the file-
recei ver understand how recently the file may have been created
or nodified.

2. Wen a peer requests a directory record via a _getdir_ REQUEST,
the other peer generates a file containing a series of one or
nore concatenated Directory Entry records, and transfers this
file as it would transfer the response to a normal _get REQUEST
sending the records together w thin DATA packets. This file may
be either tenporary or within-nmenory and not actually a part of
the host’s file systemitself.

Directory Entry Format

0 1 2 3
01234567890123456789012345678901
e i R R e e e el I S R R R R e S il I I S R R R R
| 1] Properties [Si ze (descriptor)]
B T T i S S i S T i s T e S S S S S e
| File nmodification tinme (using year 2000 epoch) |
B il a i S I o I i ot S S S I S S S S it o
| File creation time (using year 2000 epoch) |
e i R R e e e el I S R R R R e S il I I S R R R R

| /

+ /

/ /

/ File Path (max 1024 octets, variabl e | ength) /

/ oo 1

B i S S e R T i i i i S S S S S S S S S S e Y |
wher e

o e o +
| field | description |
R o m e m e ma o +

Properties if set, bit 7 of this field indicates that the

entry corresponds to a directory. Bit 6, if set,
indicates that the file is "special". A special
file may not be directly transferable as it
corresponds to a synbolic |link, a nanmed pipe, a
devi ce node, or sone other "special" filesystem

Wod, et al. Expi res Decenber 12, 2013 [Page 42]

I nternet-Draft Sar at oga June 2013

object. A file-sender may sinply choose not to

i nclude these types of files in the results of a
getdir request. Bits 8 and 9 are flags that
indicate the width of the follow ng descri ptor
field that gives file size. Bit 10 indicates that
the file is to be handl ed by Saratoga as a bundl e,
and passed to a bundl e agent.

the size of each file or directory in octets. This
is a descriptor, varying as needed in each entry
for the size of the file. For convenience in the
figure, it is shown here as a 16-bit descriptor for
a small file.

I

I

I

I

I

I

I

Si ze |
I
I
|
a tinmestanp show ng when the file or directory was |
I
I
I
I
I
I
I
I
I
I
I
I

Minme
nodi fi ed.

a timestanp of the last status change for this file
or directory.

contains the file's nane relative within the
requested path of the _getdir_ session, a maxinum
of 1024-octet UTF-8 string, which is null-
termnated to indicate its end. The File Path may
contain additional null padding in the nul
termnation to allow Directory Entries to each be
al l ocated a fixed anount of space or to place an

i nteger nunber of Directory Entries in each DATA
packet for debuggi ng purposes.

Cine

File Path

The first bit of the Directory Entry is always 1, to indicate the
start of the record and the end of any paddi ng from previ ous
Directory Entries.

S S o e e e e e oo +
| Bit 6 | Bit 7 | Properties conveyed
oo oo e +
| O | O | normal file. |
| O | 1 | normal directory.

| 1 | O | special file. |
| 1 | 1 | special directory. |

Streans listed in a directory should be nmarked as special. |If a
streamis being transferred, its size is unknown -- otherw se it
woul d be a file. The size property of a Directory Entry for a stream
is therefore expected to be zero.

Wod, et al. Expi res Decenber 12, 2013 [Page 43]

I nternet-Draft Sar at oga June 2013

S SRS S SRS U O U +
| Bit 8 | Bit 9 | Properties conveyed |
+o e e - - +o e e - - o m e - +
| O | O | File size is indicated in a 16-bit descriptor.

| O | 1 | File size is indicated in a 32-bit descriptor.

| 1 | O | File size is indicated in a 64-bit descriptor.

| 1 | 1 | File size is indicated in a 128-bit descriptor.

S e S e o +

Flag bits 8 and 9 of Properties are descriptor size flags, wth
simlar neaning as before, describing the size of the File Size
descriptor that follows the Properties field. Wen a single
Directory Entry appears in the METADATA packet, these flags SHOULD
match flag bits 8 and 9 in the METADATA header. (A snaller
descriptor size nay be indicated in the Directory Entry when doi ng
test transfers of small files using |large descriptors.)

S RS- U U +
| Bit 10 | Properties conveyed |
I o m e e e e e e e e e e e e e e e e e m +
| O | Filereally is a file. |
| 1 | File is to be treated as a bundle. |
ey T YYS +

Bit 10 of Directory Entry Properties is a bundle flag, as indicated
in and matching the METADATA header. Use of Saratoga with bundles is
di scussed further in [I-D. wood-dtnrg-saratoga].

| | This file's content MUST be delivered reliably

	wthout errors using UDP.
1	This file's content MAY be delivered
	unreliably, or partly unreliably, where errors
	are tolerated, using UDP-Lite.

Bit 13 indicates whether the file nust be sent reliably or can be
sent at |east partly unreliably, using UDP-Lite. This matches
METADATA fl ag use.

Undefined or unused flag bits of the Properties field default to

zero. Bit Ois always 1, to indicate the start of a Directory Entry.
In general, bits 1-7 of Properties are for matters related to the

Wod, et al. Expi res Decenber 12, 2013 [Page 44]

I nternet-Draft Sar at oga June 2013

6.

6.

1

1

sender’s filesystem while bits 8-15 are for matters related to
transport over Saratoga.

It may be reasonable that files are visible in Directory Entries only
when they can be transferred to the requester - this nay depend on
e.g. having appropriate access perm ssions or being able to handle
|arge filesizes. But requesters only capable of handling small files
MUST be able to skip through large descriptors for large file sizes.
Directory sizes are not calculated or sent, and a Size of 0 is given
instead for directories, which are considered zero-length files.

The "epoch” format used in file creation and nodification tinmestanps
in directory entries indicates the unsigned nunber of seconds since
the start of January 1, 2000 in UTC. The tinmes MJST include all |eap
seconds. Using unsigned 32-bit values neans that these tinme fields
will not wap until after the year 2136.

Converting fromuni x CTine/ Ml nme holding a tinme past January 1, 2000
but with the traditional 1970 epoch nmeans subtracting the fixed val ue
of 946 684 822 seconds, which includes the 22 | eap seconds that were
added to UTC between 1 January 1970 and 1 January 2000. A unix tinme
before 2000 is rounded to January 1, 2000.

A file-receiver should preserve the tinmestanp information received in
t he METADATA for its own copy of the file, to allow newer versions of
files to propagate and supercede ol der versions.

Behavi our of a Sarat oga Peer

This section describes sone details of Saratoga inplenentations and
uses the RFC 2119 standards | anguage to descri be which portions are
needed for interoperability.

Sar at oga Sessi ons

Foll ow ng are descriptions of the packet exchanges between two peers
for each type of session. Exchanges rely on use of the Id field to
mat ch responses to requests, as described earlier in Section 4. 2.

1. The _get_ Session

1. A peer (the file-receiver) sends a REQUEST packet to its peer
(the file-sender). The Flags bits are set to indicate that this
is not a delete_request, nor does the File Path indicate a
directory. Each _get_ session corresponds to a single file, and
fetching multiple files requires sending nultiple REQUEST packets
and using nmultiple different Session Ids so that responses can be
differentiated and nmatched to REQUESTs based on the Id field. If

Wod, et al. Expi res Decenber 12, 2013 [Page 45]

I nternet-Draft Sar at oga June 2013

a specific file is being requested, then its nane is filled into
the File Path field, otherwise it is left null and the fil e-
sender will send a file of its choice.

2. If the _get_request is rejected, then a STATUS packet contai ni ng
an error code in the Status field is sent and the session is
term nated. This STATUS packet MJST be sent to reject and
termnate the session. The error code MAY nake use of the
"Unspecified Error" value for security reasons. Sonme REQUESTs
m ght al so be rejected for specifying files that are too large to
have their |l engths encoded within the maximuminteger field wdth
advertised by bits 8 and 9 of the REQUEST.

3. If the _get_ request is accepted, then a STATUS packet MAY be
sent with an error code of 00 and an I n-Response-To field of
zero, to indicate acceptance. Sending other packets (METADATA or
DATA) al so indicates acceptance. The file-sender SHOULD generate
and send a METADATA packet. A METADATA packet that is received
MUST be parsed. The sender MJST send the contents of the file or
stream as a series of DATA packets. In the absence of STATUS
packets being requested fromthe receiver, if the file-sender
believes it has finished sending the file and is not on a
unidirectional link, it MJST send the |ast DATA packet with the
Flags bit set requesting a STATUS response fromthe file-
receiver. The |ast DATA packet MJST al ways have its End of Data
(EOQD) bit set. This can be followed by enpty DATA packets with
the Flags bits set with EOD and requesting a STATUS until either
a STATUS packet is received, or the inactivity tinmer expires.

Al of the DATA packets MJST use field widths for the file offset
descriptor fields that match what the Flags of the METADATA
packet specified. Sonme arbitrarily selected DATA packets may
have the Flags bit set that requests a STATUS packet. The file-
recei ver MAY voluntarily send STATUS packets at other tines,
where the I n-Response-To field MIST set to zero. The file-

recei ver SHOULD voluntarily send a STATUS packet in response to
the first DATA packet.

4. As the file-receiver takes in the DATA packets, it wites them
into the file locally. The file-receiver keeps track of m ssing
data in a hole list. Periodically the file sender will set the
ack flag bit in a DATA packet and request a STATUS packet from
the file-receiver. The STATUS packet can include a copy of this
hole list if there are holes. File-receivers MIST send a STATUS
packet imediately in response to receiving a DATA packet with
the Flags bit set requesting a STATUS.

5. If the file-sender receives a STATUS packet with a non-zero
nunber of holes, it re-fetches the file data at the specified

Wod, et al. Expi res Decenber 12, 2013 [Page 46]

I nternet-Draft Sar at oga June 2013

offsets and re-transmts it. |f the METADATA packet has not been
received, this is indicated by a bit in the STATUS packet, and

t he METADATA packet can be retransmtted. The file-sender MJST
retransmt data fromany holes reported by the file-receiver
before proceeding further with new DATA packets.

6. Wien the file-receiver has fully received the file data and any
METADATA packet, then it sends a STATUS packet indicating that
the session is conplete, and it term nates the session |ocally,
al though it MJST persist in responding to any further DATA
packets received fromthe file-sender with ’conpleted” STATUSes,
as described in Section 4.5, for sonme reasonabl e anount of tine.
Starting a tinmer on sending a conpleted STATUS and resetting it
whenever a recei ved DATA/ sent 'conpl eted’ STATUS session takes
pl ace, then renoving all session state on tiner expiry, is one
approach to this.

G ven that there may be a high degree of asymmetry in |ink bandw dth
between the file-sender and file-receiver, the STATUS packets shoul d
be carefully generated so as to not congest the feedback path. This
nmeans that both a file-sender should be cautious in setting the DATA
Fl ags bit requesting STATUSes, and also that a file-receiver should
be cautious in gratuitously generating STATUS packets of its own
volition. Wen sending on known unidirectional |inks, a file-sender
cannot reasonably expect to receive STATUS packets, so shoul d never
request them

6.1.2. The _getdir_ Session

A _getdir_ session to obtain a Directory Record proceeds through the
same states as the _get_ session. Rather than transferring the
contents of a file fromthe file-receiver to the file-sender, a set
of records representing the contents of a directory are transferred
as a file. These records can be parsed and dealt with by the file-
receiver as desired. There is no requirenent that a Saratoga peer
send the full contents of a directory listing; a peer may filter the
results to only those entries that are actually accessible to the
requesti ng peer.

Any file systementries that would normally be contained in the

directory records, but that have sizes greater than the receiver has
indicated that it can support in its BEACON, MUST be filtered out.

Wod, et al. Expi res Decenber 12, 2013 [Page 47]

I nternet-Draft Sar at oga June 2013

6.1.3. The _delete_ Session

1. A peer sends a REQUEST packet with the bit set indicating that it
is a deletion request and the path to be deleted is filled into
the File Path field. The File Path MJUST be filled in for
delete sessions, unlike for _get_ sessions.

2. The other peer replies with a feedback STATUS packet whose |d
matches the I1d field of the delete REQUEST. This STATUS has a
Status code that indicates that the file is not currently present
on the filesystem (indicated by the 00 Status field in a success
STATUS), or whether sonme error occurred (indicated by the non-
zero Status field in a failure STATUS). This STATUS packet MJST
have no Holes and 16-bit w dth zero-val ued Progress |Indicator and
I n- Response-To fi el ds.

If a request is received to delete a file that is already deleted, a
STATUS with Status code 00 and other fields as described above is
sent back in acknow edgenent. This response indicates that the
indicated file is not present, not the exact action sequence that |ed
to a not-present file. This idenpotent behaviour ensures that | oss
of STATUS acknow edgenents and repeated _delete_requests are handl ed

properly.
6.1.4. The _put_ Session

A _put _ session proceeds as a _get_ does, except the file-sender and
file-receiver roles are exchanged between peers. In a put_a PUT
REQUEST is sent.

However, in a 'blind _put_ ', no REQUEST packet is ever sent. The
file-sending end senses that the session is in progress when it
recei ves METADATA or DATA packets for which it has no know edge of
the Id field.

If the file-receiver decides that it will store and handle the _put
request (at |east provisionally), then it MJST send a voluntary (ie,
not requested) success STATUS packet to the file-sender. O herw se,
it sends a failure STATUS packet. After sending a failure STATUS
packet, it may ignore future packets with the sanme Id field fromthe
file-sender, but it should, at a lowrate, periodically regenerate
the failure STATUS packet if the flow of packets does not stop.

Wod, et al. Expi res Decenber 12, 2013 [Page 48]

I nternet-Draft Sar at oga June 2013

6. 2. Beacons

Sendi ng BEACON packets is not required in any of the sessions

di scussed in this specification, but optional BEACONs can provide
useful information in many situations. |f a node periodically
gener at es BEACON packets, then it should do so at a | ow rate which
does not significantly affect in-progress data transfers.

A node that supports multiple versions of Saratoga (e.g. version 1
fromthis specification along with the ol der version 0), MAY send
mul ti pl e BEACON packets show ng different version nunbers. The
versi on nunber in a single BEACON should not be used to infer the

| arger set of protocol versions that a peer is conpatible wth.
Simlarly, a node capable of comunicating via |IPv4 and | Pv6 MAY send
separate BEACONs via both protocols, or MAY only send BEACONs on its
preferred protocol.

If a node receives BEACONs froma peer, then it SHOULD NOT attenpt to
start any _get_, _getdir_, or _delete_ sessions with that peer if bit
14 is not set in the |atest received BEACONs. Likewi se, if received
BEACONs from a peer do not have bit 15 set, then _put_ sessions
SHOULD NOT be attenpted to that peer. Unlike the capabilities bits
whi ch prevent certain types of sessions frombeing attenpted, the

w I lingness bits are advisory, and sessions MAY be attenpted even if
the node is not advertising a willingness, as long as it advertises a
capability. This avoids waiting for a willingness indication across
| ong-del ay | i nks.

6. 3. Upper-Layer Interface

No particular application interface functionality is required in

i npl enentations of this specification. The neans and degree of
access to Saratoga configuration settings, and session control that
is offered to upper |ayers and applications, are conpletely

i npl enent ati on-dependent. In general, it is expected that upper

| ayers (or users) can set tinmeout values for session requests and for
inactivity periods during the session, on a per-peer Or per-session
basi s, but in sone inplenmentati ons where the Saratoga code is
restricted to run only over certain interfaces with well-understood
operational |atency bounds, then these tinmers MAY be hard- coded.

6.4. Inactivity Tiner

In order to determne the |liveliness of a session, Saratoga nodes may
i npl enment an inactivity timer for each peer they are expecting to see
packets from For each packet received froma peer, its associated
inactivity tinmer is reset. |If no packets are received for sone
anmount of time, and the inactivity timer expires, this serves as a

Wod, et al. Expi res Decenber 12, 2013 [Page 49]

I nternet-Draft Sar at oga June 2013

signal to the node that it should abort (and optionally retry) any
sessions that were in progress with the peer. Information fromthe
link interface (i.e. link dow) can override this tinmer for point-to-
poi nt |inks.

The actual length of tinme that the inactivity timer runs for is a
matter of both inplenentation and depl oynent situation. Relatively
short tinmers (on the order of several round-trip tinmes) allow nodes
to quickly react to |l oss of contact, while longer tiners allow for
sessi on robustness in the presence of transient link problenms. This
docunent deli berately does not specify a particular inactivity tinmer
val ue nor any rules for setting the inactivity timer, because the
protocol is intended to be used in both |ong- and short-del ay

regi nes.

Specifically, the inactivity timer is started on sendi ng REQUEST or
STATUS packets. Wen sendi ng packets not expected to elicit
responses (BEACON, NMETADATA, or DATA wi t hout acknow edgenent
requests), there is no point to starting the local inactivity tinmer.

For normal file transfers, there are sinple rules for handling
expiration of the inactivity timer during a _get_or _put_ session.
Once the tiner expires, the file-sender SHOULD term nate the session
state and cease to send DATA or METADATA packets. The file-receiver
SHOULD stop sendi ng STATUS packets, and MAY choose to store the file
in some cache location so that the transfer can be recovered. This
is possible by waiting for an opportunity to re-attenpt the session
and i nmedi ately sending a STATUS that only lists the parts of the
file not yet received if the session is granted. |In any case, a
partially-received file MUST NOT be handled in any way that would

al ow anot her application to think it is conplete.

The file-sender may inplenment nore conplex tinmers to allow rate-based
paci ng or sinple congestion control using information provided in
STATUS packets, but such possible tinmers and their effects are

del i berately not specified here.

6.5. Streans and w appi ng

When sending an indefinite-length stream the possibility of offset
sequence nunbers wrappi ng back to zero nust be considered. This can
be protected agai nst by using large offsets, and by the stream
receiver. The receiver MJST separate out holes before the offset
waps to zero fromholes after the wap, and send Hole definitions in
di fferent STATUS packets, with Flag 14 set to mark them as

i nconpl ete. Any Hole straddling a sequence wap MJST be broken into
two separate Holes, with the second Hole starting at zero. The

ti mestanps in STATUS packets carrying any pre-wap hol es should be

Wod, et al. Expi res Decenber 12, 2013 [Page 50]

I nternet-Draft Sar at oga June 2013

earlier than the tinestanp in | ater packets, and should repeat the
timestanp of the | ast DATA packet seen for that offset sequence
before the following wap to zero occurred. Receivers indicate that
they no | onger wish to receive streans by sending Status Code OC

6.6. Conpleting file delivery and ending the session

The sender infers a conpletely-received transfer fromthe reported
recei ver window position. In the final STATUS packet sent by the
receiver once the file to be transferred has been conpletely
received, bit 14 MJST be 0 (indicating a conplete set of holes in
this packet), there MJUST NOT be any holestofill offset pairs

i ndi cating holes, the In-Response-To and Progress Indicator fields
contain the length of the file (i.e. point to the next octet after
the file), and the voluntary flag MJST be set. This ’'conpleted
STATUS nmay be repeated, depending on subsequent sender behavi our,
while internal state about the transfer remains available to the
receiver.

Because METADATA not mandatory for inplenentations, the file receiver
may not know the length of a file if METADATA is never sent. The
sender MJST set the EOD End of Data flag in each DATA packet that
sends the last byte of the file, and SHOULD request a STATUS

acknow edgenent when the ECD flag is set. |f METADATA has been sent
and the EOD cones earlier than a previously reported | ength of a
file, an unspecified error 0x01, as described below, is returned in
t he STATUS nessage responding to that DATA packet and EOD flag. |If
streamis being narked EOD, the receiver acknow edges this with a
Success 0x00 code.

a

7. Miiling |ist

There is a mailing list for discussion of Saratoga and its
i npl enentations. Contact Lloyd Wod for details.

8. Security Considerations

The design of Saratoga provides limted, deliberately |ightweight,
services for authentication of session requests, and for

aut hentication or encryption of data files via keyed netadata
checksuns. This docunent does not specify privacy or access control
for data files transferred. Privacy, access, authentication and
encryption issues may be addressed within an inplenentation or

depl oynment in several ways that do not affect the file transfer
protocol itself. As exanples, |IPSec may be used to protect Saratoga
i mpl enmentations fromforged packets, to provide privacy, or to
authenticate the identity of a peer. Oher inplenentation-specific
or configuration-specific mechanisns and policies mght also be

Wod, et al. Expi res Decenber 12, 2013 [Page 51]

I nternet-Draft Sar at oga June 2013

enpl oyed for authentication and authorization of requests.

Protection of file data and neta-data can al so be provided by a

hi gher-1level file encryption facility. |If IPsec is not required, use
of encryption before the file is given to Saratoga is preferable.

Basic security practices |like not accepting paths with "..", not
foll ow ng synbolic |inks, and using a chroot() systemcall, anong
ot hers, should also be considered within an inplenmentation.

Note that Saratoga is intended for single-hop transfers between
peers. A METADATA checksum using a previously shared key can be used
to decrypt or authenticate delivered DATA files. Saratoga can only
provi de payl oad encryption across a single Saratoga transfer, not
end-to-end across concat enated separate hop-by-hop transfers through
untrusted peers, as checksumverification of file integrity is

requi red at each node. End-to-end data encryption, if required, MJST
be inplenmented by the application using Saratoga.

9. | ANA Consi derations
| ANA has all ocated port 7542 (tcp/udp) for use by Sarat oga.

sar at oga 7542/ tcp Sarat oga Transfer Protoco
sar at oga 7542/ udp Sar at oga Transfer Protoco

| ANA has allocated a dedicated IPv4 all-hosts nulticast address
(224.0.0.108) and a dedicated IPv6 Iink-local nulticast addresses
(FF02:0:0:0:0:0:0:6¢c) for use by Saratoga.

10. Acknow edgenents

Devel opi ng and depl oying the on-orbit |P-based infrastructure of the
Di saster Monitoring Constellation, in which Saratoga has proven
useful, has taken the efforts of hundreds of people over nore than a
decade. We thank them all

We thank Janes HH McKimas an early contributor to Saratoga

i npl enent ati ons and specifications, while working for RSIS
Informati on Systens at NASA G enn. W regard Jimas an aut hor of
this docunent, but are prevented by the boilerplate five-author [imt
fromnamng himearlier

We thank Stewart Bryant, Dale Mellor, Cathryn Peoples, Kerrin Pine,
Abu Zafar Shahriar and Dave Stewart for their revi ew comrents.

Wrk on this specification at NASA's d enn Research Center was funded
by NASA's Earth Sci ence Technol ogy O fice (ESTO).

Wod, et al. Expi res Decenber 12, 2013 [Page 52]

I nternet-Draft Sar at oga June 2013

11. A Note on Nam ng

Saratoga is naned for the USS Saratoga (CV-3), the aircraft carrier
sunk at Bikini Atoll that is now a popular diving site.

12. Ref er ences
12. 1. Nor mati ve Ref erences

[RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.

[RFC1321] Rivest, R, "The MD5 Message-Di gest Al gorithnt, RFC 1321,
April 1992.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC3309] Stone, J., Stewart, R, and D. Qis, "Stream Control
Transm ssi on Protocol (SCTP) Checksum Change", RFC 3309,
Sept enber 2002.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

12. 2. I nformati ve References

[Hogi e05] Hogie, K, Criscuolo, E., and R Parise, "Using Standard
I nternet Protocols and Applications in Space", Conputer
Net wor ks, Special |Issue on Interplanetary Internet, vol.
47, no. 5, pp. 603-650, April 2005.

[1-D. wood- dt nrg-sar at oga]
Wod, L., MKim J., Eddy, W, lvancic, W, and C
Jackson, "Using Saratoga with a Bundl e Agent as a
Convergence Layer for Del ay-Tol erant Networking", draft-
wood- dt nrg-saratoga-11 (work in progress) , April 2013.

[1-D. wood-tsvwg- sar at oga- congesti on-control]
Wod, L., Eddy, W, and W Ivancic, "Congestion control
for the Saratoga protocol", draft-wood-tsvwy-saratoga-
congestion-control-03 (work in progress) , April 2013.

[1I'vanci c10]
Ivancic, W, Eddy, W, Stewart, D., Wod, L., Northam J.
and C. Jackson, "Experience with delay-tol erant networKki ng
fromorbit", International Journal of Satellite
Communi cati ons and Networ ki ng, Special |ssue on best

Wod, et al. Expi res Decenber 12, 2013 [Page 53]

I nternet-Draft Sar at oga June 2013

papers of the Fourth Advanced Satellite Mbile Systens
Conf erence (ASMs 2008), vol. 28, issues 5-6, pp. 335-351,
Sept enber - Decenber 2010.

[Jackson04]

Jackson, C., "Saratoga File Transfer Protocol", Surrey
Satellite Technology Ltd internal technical docunent |,
2004.

[RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol", STD
9, RFC 959, Cctober 1985.

[RFC3828] Larzon, L-A., Degermark, M, Pink, S., Jonsson, L-E., and
G Fairhurst, "The Lightweight User Datagram Protocol
(UDP-Lite)", RFC 3828, July 2004.

[RFC5050] Scott, K. and S. Burleigh, "Bundl e Protocol
Speci fication", RFC 5050, Novenber 2007.

[RFC5348] Floyd, S., Handley, M, Padhye, J., and J. Wdner, "TCP
Friendly Rate Control (TFRC): Protocol Specification", RFC
5348, Septenber 2008.

[RFC5405] Eggert, L. and G Fairhurst, "Unicast UDP Usage Cuidelines
for Application Designers", BCP 145, RFC 5405, Novenber
2008.

[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HVAC- MD5 Al gorithns",
RFC 6151, March 2011.

[WodO7a] Wod, L., lvancic, W, Hodgson, D., Mller, E., Conner,
B., Lynch, S., Jackson, C., da Silva Curiel, A, Cooke,
D., Shell, D., Walke, J., and D. Stewart, "Using |nternet
Nodes and Routers Onboard Satellites”, International
Journal of Satellite Conmunications and Networ ki ng,
Speci al |ssue on Space Networks, vol. 25, no. 2, pp.
195- 216, March/ April 2007.

[WWod0O7b] Wbod, L., Eddy, W, Ivancic, W, Mller, E., McKim J.
and C. Jackson, "Saratoga: a Del ay-Tol erant Networ ki ng
convergence |layer with efficient link utilization"

I nternational Wrkshop on Satellite and Space
Communi cations (IWSSC ' 07) Sal zburg, Septenber 2007.

Wod, et al. Expi res Decenber 12, 2013 [Page 54]

I nternet-Draft Sar at oga June 2013

[Wod11] Wod, L., Smth, C, Eddy, W, lvancic, W, and C
Jackson, "Taking Saratoga from space-based ground sensors
t o ground- based space sensors”, |EEE Aerospace Conference
Bi g Sky, Mntana, March 2011

Appendi x A. Tinmestanp/ Nonce field considerations

Ti mest anps are useful in DATA packets when the tinme that the packet
or its payload was generated is of inportance; this can be necessary
when stream ng sensor data recorded and packetized in real tine. The
format of the optional tinestanp, whose presence is indicated by a
flag bit, is inplenentation-dependent within the avail able fixed-

l ength 128-bit field. How the contents of this tinmestanp field are
used and interpreted depends on |ocal needs and conventions and the

| ocal inplenentation.

However, one sinple suggested format for tinestanps is to begin with
a PCSI X tinme_t representation of tinme, in network byte order. This
is either a 32-bit or 64-bit signed integer representing the nunber
of seconds since 1970. The remainder of this field can be used
either for a representation of elapsed time within the current
second, if that |evel of accuracy is required, or as a nonce field
uni quely identifying the packet or including other information. Any
| ocal |l y-nmeani ngful flags identifying a type of tinestanp or tinebase
can be included before the end of the field. Unused parts of this
field MUST be set to zero.

There are nmany different representations of tinmestanps and ti nebases,
and this draft is too short to cover themin detail. One suggested
flag representation of different tinmestanp fields is to use the |east
significant bits at the end of the tinmestanp/nonce field as:

2000 epoch, as in file tinestanps. This option is
likely only useful for very slow |inks.

R o +
| Status | Meani ng |
| Val ue | |
S T +
00	No flags set, local interpretation of field.
01	32-bit POSI X tinmestanp at start of field indicating
	whol e seconds from epoch.
02	64-bit PCSI X tinmestanp at start of field indicating
	whol e seconds el apsed from epoch.
03	32-bit POSI X timestanp, as in 01, followed by 32-bit
	timestanp indicating fraction of the second el apsed.
04	64-bit POSI X timestanp, as in 02, followed by 32-bit

	timestanp indicating fraction of the second el apsed.
05	32-bit tinmestanp giving seconds el apsed since the

Wod, et al. Expi res Decenber 12, 2013 [Page 55]

I nternet-Draft Sar at oga June 2013

O her values may indicate specific epochs or tinebases, as |ocal
requi renents dictate. There are nmany ways to define and use tine
useful ly.

Echoing tinmestanps back to the file-sender is also useful for
tracking flow conditions. This does not require the echoing receiver
to understand the timestanp format or values in use. The use of

ti mestanp values nmay assist in devel oping algorithns for flow control
(including TCP-Friendly Rate Contr ol

[1-D. wood-tsvwg- sar at oga- congestion-control]) or other purposes.

Ti mestanp val ues provide a useful nmechanismfor Saratoga peers to
nmeasure path and round-trip | atency.

Aut hors’ Addr esses

LI oyd Wod

Uni versity of Surrey al umni
Sydney, New South Wl es
Australia

Emai | : L. Wod@oci ety. surrey. ac. uk

Wesl ey M Eddy

Ml Syst ens

M5 500- ASRC

NASA d enn Research Center
21000 Brookpar k Road

Gl evel and, OH 44135

USA

Phone: +1-216-433-6682
Emai |l . wes@rti-systens. com

Charles Smth

Val | ona Net wor ks

7 Wattl e Crescent

Phegans Bay, New South Wales 2256
Australia

Phone: +61-404-05-8974
Emai | : charl esetsm th@re. com

Wod, et al. Expi res Decenber 12, 2013 [Page 56]

I nternet-Draft Sar at oga June 2013

WIIl lvancic

NASA d enn Research Center
21000 Brookpark Road, Ms 54-5
Cl evel and, OH 44135

USA

Phone: +1-216-433-3494
Email: WIIliamD.lvanci c@rc. nasa. gov

Chris Jackson

Surrey Satellite Technol ogy Ltd
Tycho House

Surrey Space Centre

20 St ephenson Road

Qui ldford, Surrey GJR 7YE

Uni ted Ki ngdom

Phone: +44-1483-803803
Email ;. C Jackson@st! . co. uk

Wod, et al. Expi res Decenber 12, 2013 [Page 57]

