

1 of 10

Abstract—We examine how the overall reliability of network

protocol stacks is affected by the use of error-detecting

checksums and Cyclic Redundancy Checks at each protocol

layer. How these checksums cover their frames and payloads can

affect the reliability of the rest of the stack, particularly higher

layers, and the resulting delivery of data. We then apply insights

gained to a comparison of new protocols promising delivery of

packets with payload errors, to determine how well those

protocols achieve that goal when used in realistic stacks.

Index Terms—checksum, CRC, partial checksum, partial

reliability, Internet, IP, TCP, UDP, DCCP, UDP-Lite, Saratoga,

Licklider, LTP, DTN, delay-tolerant networking, bundles.

I. INTRODUCTION

Reliability in the processing and delivery of received data is

fundamental to packet networking. By this, we mean being

able to trust the data in the payloads of the packets that you

receive, and being able to trust the structure of the very

packets and frames so that you can decode them correctly and

get at the payload data they hold. This is distinct from

(although supplemental to and a prerequisite for) the notion of

delivery reliability from acknowledgement and retransmission

protocols. Even when applications can tolerate errors in the

payload data they receive, delivered by the protocols discussed

in section V, they must be able to rely on the structure and

headers of the packets and frames delivering that content.

The well-known end-to-end principle [1] describes the need

for checks on data delivery at the highest layer in the protocol

stack, in order to be able to recognize and recover from errors

introduced in transmission or in the functionality at all lower

layers. We summarize the normal application of this principle

to the five-layer protocol stack in Fig. 1, where checksum

protection of frames and their payloads is shown for each

layer. The physical layer often protects against channel-

induced errors with symbol coding, but does not normally use

checksums to reject errored frames. Framing bits is normally a

function in higher layers.

In Fig. 1, the scenarios shown in the protocol stacks used in

(a), with an end-to-end checksum at the highest layer, and (b),

with checksums at all layers, are considered reliable. A

ramification of the end-to-end principle is that the added

lower-layer checks in (b) may be unnecessary, and that overall

performance may be increased in individual cases by their

omission, although that is not universally so.

Draft working paper, 17 July 2007.

Work on this document at NASA's Glenn Research Center was funded by

NASA's Earth Science Technology Office (ESTO).

L. Wood is with the Global Government Solutions Group, Cisco Systems,

Bedfont Lakes, Feltham, Middlesex, England (email lwood@cisco.com).

W. M. Eddy is with Verizon Federal Network Systems, contracted to

NASA Glenn Research Center (email weddy@grc.nasa.gov).

J. McKim is with RS Information Systems, contracted to NASA Glenn

Research Center (email James.H.McKim@grc.nasa.gov).

W. Ivancic is with NASA Glenn Research Center, Cleveland, Ohio (email

William.D.Ivancic@grc.nasa.gov).

physical

application

transport

network

data link/MAC

a. Minimal reliability with an end-to-end checksum.

physical

application

transport

data link/MAC

network

b. Still end-to-end, but redundancy in checking may be

unnecessary. Multiple ARQ control loops at different

layers may lead to performance inefficiencies.

physical

application

transport

data link/MAC

network

c. Common practice, where an application colocated with

transport on the same processor relies on reliability in

transport, e.g. a web browser and HTTP depend on TCP’s

reliability properties. Potentially affected by bugs in

transport implementations or weaknesses in transport

checksums.

physical

application

transport

data link/MAC

network

d. Shown to introduce errors in data sent to the application.

checksummed frame no checksum
Figure 1: The end-to-end principle across protocol stacks

Checksum Coverage and Delivery of Errored Content

Lloyd Wood, Wesley M. Eddy, Jim McKim and Will Ivancic

2 of 10

Omitting these lower-layer checks may be detrimental to

performance, as these checks often trigger short-delay

localized error recovery methods and prevent higher-latency

end-to-end recovery from being necessary. An example of this

is a short-delay ‘last wireless hop’ in a wireless hotspot being

used for Internet communication.

ARQ locally across the wireless hop to repeat errored or lost

frames is far faster than end-to-end recovery across the longer

Internet path using a higher-layer protocol; TCP can be

thought of as a much slower ARQ protocol over a longer path.

Fig. 1(c) is how the end-to-end principle is commonly

applied in practice. This assumes that data is delivered

between application and transport layer correctly. An overall

checksum of data at the application would add protection,

especially considering the relative weakness of commonly-

used transport-layer checksums, and provide the ability to

check reassembly of transport packets into a file. However, as

with HTTP or FTP transfers, this is often not done. In practice,

the link-layer CRCs are usually stronger than the transport-

layer checksum, protecting against channel noise as an

obvious source of errrors. Putting the strongest checksum

highest in the stack would make the most sense for overall

end-to-end reliability.

Fig. 1(d) is widely recognized as prone to data corruption.

Examples of this configuration in practice include disabling

IPv4 UDP checksums without a higher-level error check in

place. This has led to subtle, hard-to-detect, corruption of files

stored in network filesystems [2].

II. TYPES OF CHECKSUMS

The types and strengths of checksums vary, from simple 16-

bit one’s-complement checks that will not detect swapped

words, through Fletcher, Adler, and other checksums, and up

to strong CRCs, and even stronger cryptographic hash

functions.

This paper is primarily concerned with whether a data unit’s

header and/or payload have any internal protection against

errors via checksum coverage, rather than with the relative

strengths and weaknesses of the particular checksum used.

For more detailed discussion of strengths and weaknesses of

checksums and CRCs, see Stone’s work, that also clearly

motivates the need for end-to-end checksums that can detect

errors in intermediate processing that even the use of strong

link-frame checksums cannot detect [3][4].

III. TERMINOLOGY

To be able to describe the uses of checksums in protocols,

we must first define some terminology for the concepts we

talk about. We discuss errors in content (delivery of content

containing payload bit errors, where permitted because the

application can tolerate errors) and reliable delivery (delivery

of all packets, with resends of lost or too-corrupted packets).

Errored reliable delivery, where bit errors in the content may

be tolerated as long as the correct amount of (partially

incorrect) data reaches the correct endpoint, is distinct from

error-free reliable delivery, and these are in turn different from

unreliable delivery, where packets may be lost and not resent.

Applications that can benefit from delivery of errored

content include some streaming audio and video codecs,

where the user experience is degraded less by a small number

of bit errors in a complete, continuous, stream than by an

entirely erased frame that makes the stream discontinuous.

We are careful to distinguish between permitting errors in

content or payload data, which, if tolerated, can allow the

payload to be passed up to the next protocol layer to decode

and decide whether the error can be coped with, and errors in

the frame format, which should be detected and protected

against. A protocol that can detect and protect against errors in

its own format and fields (regardless of whether its payload is

protected or not) is said to have a robust format. Being robust

is desirable; more robustness of important header fields can by

given by a stronger checksum. A frame that protects against

errors in payload and header fields is error-rejecting. We talk

of checksums giving protection of frames against errors when

error rejection takes place and ‘bad’ errored frames are

discarded.

IV. SOME EXAMPLES OF CHECKSUM COVERAGE

We examine checksum coverage and protection in common

communication protocols used in the link layer and above.

A. Ethernet

Ethernet frames include a 32-bit Cyclic Redundancy Check

(CRC) in the frame trailer, covering the header and payload as

a contiguous whole.

payload C
R

C

M
A

C
 s

rc

M
A

C
 d

s
t

E
th

e
rt

y
p
e

Figure 2. Ethernet Type II frame

B. HDLC, PPP and Frame Relay

High Level Data Link Control (HDLC) frames [5], which

are delineated by start and end flags, include a 16- or 32-bit

CRC or Frame Check Sequence (FCS) in the frame trailer,

covering both the header and the payload. The Point-to-Point

serial Protocol (PPP) [6][7] and Frame Relay [8] are similar

overall to HDLC, with trailing checksums, although header

fields differ between them.

payload

C
R

C

c
o
n
tr

o
l

fl
a

g

fl
a
g

a
d
d
r

Figure 3. Typical HDLC frame layout

C. ATM and the AAL layers

The ATM Adaptation Layer 5, AAL5, the most common of

the ATM adaptation layers [9] , is used to carry other protocol

frames. A 32-bit CRC covers the frame and ends the trailer.

payload C
R

C

le
n
g
th

p
a

d
d
in

g

Figure 4. ATM Adaption Layer 5 (AAL5) frame

3 of 10

H
E

C

48-octet payload

Figure 5. 53 octet ATM cell

ATM cells can be used to carry parts of ATM frames. The

ATM cell has minimal header protection and robustness with

the Header Error Control (HEC) octet, which is an 8-bit CRC

of the previous 4 header octets.

Payload checksums are not computed across individual

ATM cells, as this would be computationally and spatially

prohibitive, as well as unnecessary for carrying some

applications (e.g. uncompressed digitized voice telephony).

Instead, checksum protection is left to the higher AAL layer.

D. Multi-Protocol Label Switching

Multi-Protocol Label Switching (MPLS) is used extensively

to enable efficient forwarding, short failure recovery times,

and traffic engineering [8]. MPLS adds one or more

independent 32-bit headers (called labels) to the front of a

payload for fast switching and tunneling.

The MPLS label stack does not include any internal

checksums, and so relies on lower-layer coverage. The

indication that the stack is ending and the payload is beginning

is a single-bit flag set in the last label; corruption of this flag in

any label would be problematic, and could cause unpredictable

propagation of incorrectly framed payloads until stopped by

some other error condition.

la
b
e
l

la
b

e
l

la
b
e
l

la
b
e
l

payload frame

label stack bottom-of-stack marker (1-bit flag)

0 0 0 1

Figure 6. MPLS label stack on front of payload

E. Generic Routing Encapsulation

Generic Routing Encapsulation (GRE) headers [11], used to

tunnel packets, consist of a 32-bit header followed by an

optional field that includes a one’s-complement checksum.

This checksum covers both the GRE header and the payload.

Often, only the first 32-bit word is present, making GRE

headers reliant on lower layers for protection.

payload frame

G
R

E
 h

e
a

d
e
r

a. Common GRE use without options

o
p
tio

n
s

G
R

E
 h

e
a
d
e
r

G
R

E

payload frame

c
h

e
c
k
s
u
m

b. GRE use with optional header including checksum

Figure 7. GRE encapsulation

F. Internet Protocol version 4 (IPv4)

The IPv4 header [12] is robust, in that it contains an internal

checksum covering just the IP header, including the IP header

options, if any of those are present. This checksum is a simple

and relatively weak 16-bit ones-complement checksum, which

cannot detect changes in the header such as swapped words.

We deliberately show the IPv4 options header in Fig. 8, even

though it is very rarely used, in order to make the separate

pseudo-header fields included in the TCP and UDP checksums

more visible later.

The length of the header and options, used by the checksum,

is given by the Header Length (HL) field. One common

criticism of the IPv4 header is that the checksum also covers

the Time to Live (TTL) field, which was originally specified

as a decreasing timer, but was implemented as a hop limit

field in practice. This hop limit is decremented at each hop in

the path, requiring the IP header checksum to be recomputed

to cover the new hop count value [13][14]. This recomputation

and possible injection of errors during the header modification

process turns an intended end-to-end header checksum into a

de-facto per-link header checksum, weakening it considerably.

A header checksum that simply skipped the TTL octet would

have avoided this problem; recomputing the header checksum

at each hop, with the potential to introduce new errors, makes

that checksum much less robust.

IP header IP options

(if used)

payload

hl

T
T

L
c
h

e
c
k
s
u
m

Figure 8. IPv4 header

G. Internet Protocol version 6 (IPv6)

The IPv6 header design [15] removes the header checksum

entirely, relying on the TCP and UDP ‘pseudo-header’,

discussed later, and on lower-layer frame checksums to

provide a modicum of protection for the header. This makes

Network Address Translation (NAT) of IPv6 headers easier.

An IPv6 packet is not in itself internally robust – though a

header checksum that did not cover the hop count, traffic

class, and Explicit Congestion Notification fields would have

avoided the per-hop checksum recomputation as easily as the

complete omission of a checksum.

A common IPv6 header is shown in Fig. 9. This diagram

neglects jumbograms and the varying optional IPv6 header

options, which are also not internally robust.

The lack of a checksum in the IPv6 header is mitigated

somewhat by the IPv6 specification requiring UDP to always

use checksums when composed with IPv6 and including a

pseudo-header construction and a checksum in ICMPv6, in

that it helps to ensure that these particular upper layers’ data

are being delivered to at least the correct destination node and

upper layer protocol with a correct source address. However,

this measure does not help with IP-in-IP tunneling [16], where

IP headers are used without pseudo-header protection. Here,

IPv4 tunneling has a clear robustness advantage over IPv6

tunneling, due to the IPv4 header checksum.

4 of 10

IPv6 header payload

T
T

L
p
l
le

n
g

th

s
rc

 a
d
d
re

s
s

d
s
t
a

d
d
re

s
s

p
ro

t

Fig 9. IPv6 header

H. TCP and UDP

The Transmission Control Protocol, TCP [17], and User

Datagram Protocol, UDP [18] protect their internal headers

and their entire payloads with 16-bit one’s-complement

checksums. (Alternate checksum methods for TCP have been

specified [19].)

These checksums also protect a number of IP header fields

via the inclusion of a ‘pseudo-header’. Protecting the address

and protocol fields provides a check that the TCP or UDP

segment has been demultiplexed in the correct place, while

including the packet’s length ensures that the payload is

neither truncated nor extended. The UDP pseudo-header

calculation relies on its own redundant packet length field,

rather than using the IP header’s packet length field; this is

discussed later in the context of UDP-Lite.

IPv6 is more reliant on this pseudo-header protection than

IPv4, thanks to removal of the header checksum that could

have detected errors in the IPv6 header earlier in transit.

IP header IP options
(if used)

TCP
header

payload

s
rc

 a
d
d
re

ss

d
s
t
a
d
d
re

s
s

p
ro

t

le
n

g
th

c
h
e
c
ks

u
m

s
rc

 p
o

rt
d
s
t
p
o
rt

TCP options
(when used)

a. IPv4 TCP packet

IP header IP options

(if any)

UDP

hdr
payload

s
rc

 a
d

d
re

s
s

d
s
t
a
d
d

re
s
s

p
ro

t

le
n
g
th

c
h
e
c
k
s
u
m

le
n
g
th

s
rc

 p
o
rt

d
s
t
p
o
rt

b. IPv4 UDP packet

TCP

header

payload

c
h
e
c
k
s
u
m

s
rc

 p
o
rt

d
s
t
p

o
rt

TCP options

(when used)

IPv6 header

T
T

L

s
rc

 a
d
d
re

s
s

d
s
t
a

d
d
re

s
s

p
l
le

n
g
th

p
ro

t

c. IPv6 TCP packet

UDP

hdr
payload

c
h
e
c
k
s
u
m

le
n
g
th

s
rc

 p
o

rt
d
s
t
p
o
rt

T
T

L
p
l
le

n
g
th

s
rc

 a
d
d
re

s
s

d
s
t
a
d
d
re

s
s

p
ro

t

d. IPv6 UDP packet

Figure 10. TCP and UDP packets

UDP checksums are mandatory in IPv6 to provide this

demultiplexing protection. Other transport protocols running

directly over IPv6 should include a pseudo-header check.

Although the UDP checksum can be turned off in IPv4 for

performance reasons, doing so removes the demultiplexing

check, and places more reliance on higher-level data checks.

Turning off UDPv4 checksums is recognized as a bad idea [2].

I. Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol, SCTP, began as

a way of transporting SS7 (Signalling System 7) telephony

control information. SCTP can act as a replacement for TCP

for reliable data delivery. SCTP includes support for a number

of features that TCP lacks, including multihoming. SCTP

originally included an Adler-32 packet checksum [20], but this

was later changed to be CRC that is much stronger in that it

detects more errors [21]. This CRC is roughly equivalent in

strength to the Ethernet CRCs. Although SCTP is carried in IP

just like TCP and UDP, it does not include a pseudo-header

demultiplexing check. The verification tag, established when

an SCTP connection is set up, provides an equivalent

demultiplexing check, while individual payload chunks within

the SCTP frame, which are padded out to multiple of four

bytes, provide their own internal length fields.

SCTP can permit “partial reliability” via setting a limit to

ARQ repeat persistence on certain payload chunks [22]. This

provides unreliable delivery of data – but all the data received

is checksummed so that errored packets can be rejected, and

delivery of errored data to applications is precluded by this

behaviour.

SCTP

payload chunkc
h

e
c
ks

u
m

s
rc

 p
o

rt
d

s
t
p

o
rt

le
n

g
th

fl
a
g

s
ty

p
e

le
n

g
th

fl
a
g

s
ty

p
e

le
n

g
th

fl
a
g

s
ty

p
e

chunk chunk

ve
ri

fi
c
a

ti
o
n

 t
a
g

IPv4 header

s
rc

 a
d

d
re

ss

d
s
t

a
d
d

re
s
s

p
ro

t

le
n

g
th

SCTP frame
Figure 11. SCTP packet format

V. PROTOCOLS PERMITTING ERRORED CONTENT

Occasionally, where an application and its data stream

include a degree of redundancy or are resilient to errors in the

received data, fully reliable payload delivery is considered

unnecessary (and perhaps even undesirable) by the

application.

For instance, several errored bits within a single high-

definition television frame may only subtly or imperceptibly

alter the video stream when viewed by a human, whereas

either the delay in retransmitting that entire frame, or the

deletion of that entire frame would be perceptible and degrade

the viewing experience.

Having the application accommodate errors in its received

data can be particularly useful for:

a. topologies with very long delays, where the added delay

and jitter of occasional ARQ protocol resends is

considered prohibitive, or even unnecessary and

undesirable for real-time traffic such as Voice over IP.

b. unidirectional links, where there is no way to request a

frame be resent from the receiver end of the link.

In these cases, data is often heavily forward-error-corrected

(FEC’d) in the physical layer for broadcast, with the

5 of 10

expectation that the data should normally arrive correctly.

Long-distance unidirectional links are considered common for

deep-space probes, where a modified HDLC stream with ARQ

disabled can be used effectively [23].

Where errored content can be tolerated, the system of

redundant and overlapping checksums at each protocol layer

defeats the performance goal of getting errored data to the

application. Rather than allowing the application to determine

that a couple of bits in the payload may be misset, and decide

whether this affects the reliability of the delivered payload, an

earlier lower-layer pass-or-fail checksum of its entire frame

fails, causing the entire frame to be rejected before the

application gets to see its payload. If a resend is not possible,

this can turn a single-bit error into a packet-sized hole in the

received datastream (i.e. an “erasure”). Although FEC erasure

coding protocols [24][25] can be used to recover from

transport-level errors without requiring ARQ resends, these

protocols do have overheads in terms of network capacity

used, trading ARQ resend latency for link capacity.

We now describe four transport-layer protocols that permit

delivery of errored payloads. These are DCCP, UDP-Lite, and

two new protocols developed in the context of

Delay/Disruption Tolerant Networking (DTN) – the Saratoga

Transfer Protocol and the Licklider Transmission protocol

(LTP).

A. Datagram Congestion Control Protocol (DCCP)

The Datagram Congestion Control Protocol, DCCP [26][27]

implements UDP-like unreliable delivery with flexible

congestion control options. Fig. 12 illustrates a DCCP packet

using a generic header with a long sequence number(short

sequence numbers are also possible in DCCP).

Along with a 16-bit checksum in its header, DCCP includes

a checksum coverage field.

c
h

e
c
k
s
u

m

s
rc

 p
o

rt
d

s
t

p
o

rt

s
e

q
.

n
o

…

payload

IPv4 header DCCP frame

…
s
e

q
.

n
o
.

co
v

s
rc

 a
d

d
re

s
s

d
s
t
a

d
d

re
s
s

p
ro

t

le
n

g
th

IP
 h

e
a
d

e
r

o
p

ti
o
n

s

a. DCCP with full payload protection

c
h

e
c
k
s
u

m

s
rc

 p
o

rt
d

s
t

p
o

rt

s
e

q
.

n
o

…

payload

IPv4 header DCCP frame

…
s
e

q
.

n
o

.

co
v

s
rc

 a
d

d
re

s
s

d
s
t
a

d
d

re
s
s

p
ro

t

le
n

g
th

IP
 h

e
a

d
e
r

o
p
ti
o

n
s

C
R

C
…

…
C

R
C

b. DCCP with optional strong CRC also covering payload

c
h

e
c
k
s
u
m

s
rc

 p
o

rt
d

s
t
p

o
rt

s
e

q
.
n

o
…

unprotected payload

IPv4 header DCCP frame

…
s
e

q
.

n
o

.

co
v

s
rc

 a
d

d
re

s
s

d
s
t
a

d
d

re
s
s

p
ro

t

le
n

g
th

IP
 h

e
a
d

e
r

o
p

tio
n

s

D
C

C
P

 o
p
ti
o

n
s

c. DCCP with partial protection covering headers only

c
h

e
c
k
s
u

m

s
rc

 p
o

rt
d

s
t

p
o

rt

s
e

q
.

n
o

…

unprotected
payload

IPv4 header DCCP frame

…
s
e

q
.

n
o
.

c
o
v

s
rc

 a
d

d
re

s
s

d
s
t

a
d

d
re

s
s

p
ro

t

le
n

g
th

IP
 h

e
a
d

e
r

o
p

ti
o

n
s

protected
payload

(up to 56 octets)

d. DCCP partial protection extending to first part of payload

Figure 12. DCCP packet format

When the checksum coverage field is zero, the checksum

covers the pseudo-header and all packet contents. When the

checksum coverage field contains a value x for which 0<x<16,

the checksum covers the DCCP header, options, pseudo-

header and the first 4(x-1) octets of the payload. This means

that, when the payload is partially unprotected, a maximum of

the first 56 octets of the payload can be reliably sent to cover

internal payload headers.

DCCP may also include a six-byte option containing a 32-bit

CRC, calculated the same way as the SCTP CRC, covering the

application data. This optional CRC is itself in turn covered by

the header checksum.

B. UDP-Lite

The UDP-Lite transport protocol [28] was originally

developed as an after-the-fact modification of the UDP

protocol, taking advantage of the redundant packet length

fields present in both the IP header and the UDP header. The

‘redundant’ UDP header’s packet length field is turned into an

indication of how much of the packet length is checksummed.

When the length field matches the IP header’s length field,

UDP-Lite behaves just as UDP does, and is resistant to errors.

When the UDP-Lite length is less that the total packet

length, only part of the packet is protected. Thus, like DCCP,

UDP-Lite can permit delivery of errored content to

applications, which can be useful for e.g. VoIP data. UDP-

Lite’s variable payload coverage is more flexible and fine-

grained that that of DCCP.

Unlike UDP, UDP-Lite includes the IP header’s packet

length field in its pseudo-header check. The UDP-Lite length

should always be sufficient to provide checksum coverage of

the IP pseudo-header, UDP headers, and any other higher

layer headers present, e.g. the headers of the Real-Time

Protocol (RTP), or Saratoga, discussed later.

IPv4 header IP options

(if any)

UDP-Lite

header

payload

c
h

e
c
k
s
u
m

le
n
g
th

d
s
t
p
o
rt

s
rc

 p
o

rt

s
rc

 a
d
d

re
s
s

d
s
t
a
d

d
re

s
s

p
ro

t

le
n

g
th

le
n

g
th

a. UDP-Lite with full protection, as UDP.

IPv4 header IP options
(if any)

UDP-Lite
header

s
rc

 a
d

d
re

s
s

d
s
t
a
d
d

re
s
s

p
ro

t

le
n

g
th

le
n

g
th

d
s
t
p
o
rt

s
rc

 p
o

rt

le
n

g
th

c
h
e
c
ks

u
m

payload

b. UDP-Lite with minimum robust header protection.

IPv4 header IP options

(if any)

UDP-Lite

header

s
rc

 a
d

d
re

s
s

d
s
t
a
d
d
re

s
s

p
ro

t

le
n

g
th

le
n
g
th

d
s
t
p
o
rt

s
rc

 p
o
rt

le
n

g
th

error-checked

unchecked

c
h
e
c
k
s
u
m

payload

c. UDP-Lite with partial protection dictated by length field

Figure 13. UDP-Lite variable coverage.

6 of 10

UDP-Lite was conceived as a ‘compatible upgrade’ to UDP,

but was eventually given its own, separate, protocol number.

This avoids any adverse impact on existing UDP

implementations, which rely on the previous semantics of the

UDP length field for the pseud-header check, rather than using

the IP length field.

 The ability of the payload-error-tolerant DCCP and UDP-

Lite to convey errored data to applications is predicated on

DCCP or UDP-Lite first receiving that errored data at all from

underlying layers in the network stack.

If packets of either type are carried within a lower-layer link

frame format that checks its payload and rejects errored

frames, then errored data is unlikely to reach the transport

protocol and the application. This means that UDP-Lite and

DCCP are most useful in a protocol stack where only the

transport provides a limited end-to-end reliability check, and

lower layers only verify the integrity of their own framing

headers, without mandatory attempts to verify payload

integrity that would prevent useful payload data from reaching

the transport layer and the application using it.

In section IV we reviewed common link-layer protocols,

which fully protect their payloads. DCCP and UDP-Lite’s

error tolerance is of little use when run over these protocols, as

the link checksums protect against a common form of error –

channel noise. However, Stone points out corruption in

delivered packets caused by other things than link errors [4].

This corruption can be due to bugs in intermediate processing

in routers and interfaces, or due to memory corruption – single

event upsets caused by radiation altering RAM contents

without error correction coding to detect it are not unknown.

This corruption is more likely to be in the payload or at the

end of a packet (via truncation or packet contents being

overwritten), simply because if the corruption was at the start

of the packet, the packet would not be delivered to the right

place. So, in tolerating errors in their payloads, DCCP and

UDP-Lite are actually making errors in intermediate

processing harder to detect.

C. Using UDP-Lite: Saratoga

Saratoga is a file-transfer transport protocol developed for

high utilization of dedicated links [29][30].. Saratoga is

intended for use in the scenarios where delay-tolerant

networking (DTN) [31][32] is appropriate, where connectivity

is sporadic and intermittent, and data is transferred hop-by-hop

in a store-and-forward approach, rather than along a complete

end-to-end path. As well as normal files, Saratoga can also

carry streams of data and DTN bundles.

Saratoga uses a negative ARQ mechanism to detect and

compensate for packet loss, when desired, and can disable this

mechanism within receivers if it is not needed for an

application.

Saratoga presumes that either IPv4 or IPv6 is in use on

individual links within these delay tolerant networks, so it is

designed to run over UDP. This permits Saratoga to also take

advantage of the very similar UDP-Lite, if an application

prefers and its content to be transferred is error-tolerant.

Saratoga thus inherits all of the advantages (fully variable

partial coverage) and disadvantages (a weak one’s-

complement checksum) of UDP-Lite. Using UDP-Lite,

Saratoga can deliver errored parts of particular streams, files,

or bundles to the application if the sender thinks that that is

appropriate for a particular piece of content. However, this

errored data will only reach UDP-Lite, Saratoga and the

higher application if it has not already been rejected by

checksums at lower layers. Saratoga’s packet structure

remains internally robust, thanks to its reliance on the

UDP/UDP-Lite checksum for coverage.

A UDP-Lite/Saratoga packet that is errored in its unchecked

unprotected payload part will be passed up the stack and saved

as part of a file or bundle. A UDP-Lite/Saratoga packet that is

errored in the protected part – any protected payload part or

the header information, which must be robust – can prompt an

ARQ repeat request. Saratoga also implements an optional

end-to-end MD5 integrity checksum over the entire transferred

object, to provide assurance of the received and reassembled

data. This checksum compensates for the weaker UDP

transport checksums, and covers reassembly of the received

packets.

This high-level checksum option is useful when data must be

transferred reliably end-to-end and the application does not

have its own end-to-end check, (An application check is still

better, as it covers errors in communication between Saratoga

and the application, which Saratoga’s MD5 checksum can

not.) The UDP/Lite checksum only covers a single Saratoga

packet over a single hop between communicating neighbours.

When transfers permitting errors are carried out with UDP-

Lite, this MD5 checksum can only indicate if there is a

difference between what was sent and what was received in

the complete object, not within individual datagrams

comprising the object.

IPv4 header IP options

(if any)

UDP

or Lite

hdr

payload

c
h

e
c
k
s
u
m

le
n
g
th

d
s
t
p

o
rt

s
rc

 p
o
rt Id

ti
m

e
s
ta

m
p
 (

if
 u

s
e
d

)

o
ff
s
e

t

s
rc

 a
d
d

re
s
s

d
s
t
a

d
d
re

s
s

p
ro

t

le
n
g
th

le
n
g
th

a. A-protected Saratoga payload using UDP or UDP-Lite.

IPv4 header IP options

(if any)

UDP

Lite

hdr

Saratoga

header

s
rc

 a
d
d

re
s
s

d
s
t
a
d

d
re

s
s

p
ro

t

le
n
g
th

le
n
g
th

le
n
g
th

d
s
t
p
o

rt
s
rc

 p
o
rt Id

ti
m

e
s
ta

m
p

 (
if
 u

s
e
d
)

o
ff
s
e

t

c
h
e
c
k
s
u
m

b. Robust protected headers and unprotected payload,

using UDP-Lite.

IPv4 header IP options

(if any)

UDP

Lite

hdr

s
rc

 a
d
d

re
s
s

d
s
t
a
d

d
re

s
s

p
ro

t

le
n
g
th

le
n
g
th

d
s
t
p
o

rt
s
rc

 p
o
rt Id

ti
m

e
s
ta

m
p

 (
if
 u

s
e
d

)

o
ff
s
e

t

Saratoga

header

le
n
g
th

error-checked

unchecked

c
h
e
c
k
s
u
m

c. Saratoga with partial payload protection via UDP-Lite.

Figure 14. Saratoga variable coverage

7 of 10

bundle/file segment

Saratoga payload

header

header

header link frame payload trailer

header IPv4 payload

UDP or UDP-Lite payload

UDP-Lite coverage varies

Figure 15. Saratoga use in the IP network stack

Further content checking must be left to the application and

its knowledge of the internal structure of the data transferred.

Saratoga’s use in the IP network stack, with checksum

protection for payloads is shown in Fig. 15. This use is similar

to the conventional checksum protection in Fig. 1(c).

D. The Licklider Transmission Protocol

The Licklider (or ‘long-range’ / ‘long-haul’) Transmission

Protocol (LTP) [33] is, like Saratoga, intended for carrying

bundles in DTN scenarios. Although LTP places great

emphasis on coping with very long propagation delays, both

protocols share similar functionality in this regard.

LTP is intended to be carried directly by a wide range of

link-layer protocols, but has been prototyped over UDP for

ease of development.

The internal format of an LTP packet is quite complex by

typical Internet protocol measures, containing a number of

variable-length fields which contain variable-length numbers

described in a format unique to LTP and DTN protocols

(although related to some constructs in ASN.1) – the Self-

Delimiting Numeric Value, or SDNV [34]. This stems from a

desire to aggressively conserve bits on highly-constrained data

links.This complex specification makes the LTP packet format

hard to draw. Our attempts to represent LTP packets are

shown in Fig. 16.

What is immediately obvious about this packet format is that

it is not internally robust, as it does not include a checksum for

either its payload or its various header fields, nor does it

include any pseudoheader check that would ensure its contents

are even being processed by the correct IP node.

LTP can rely on the frame that carries it to provide error-

checking, as it does when carried over UDP. When LTP is

carried directly within a single lower-layer frame, that frame’s

error-checking may be sufficient; but if an LTP frame is

segmented over the multiple frames of a lower layer and later

reassembled, the individual lower layer checksums would not

be sufficient to ensure that the LTP packet was correctly

reassembled end-to-end.

Somewhat like DCCP and Saratoga/UDP-Lite, LTP claims

to permit carriage of ‘reliable’ and ‘partially reliable’ payloads

– that is, error-free and permitted-error delivery of separate

payloads within the LTP protocol. Unlike DCCP and UDP-

Lite, which can combine protected and unprotected payload

content in one packet, these must be sent in separate LTP

frames.

LTP
start variable-length fields

v
e

rs
io

n
fl
a

g
s

tr
a

ile
r

e
xt

e
n
s
io

n
s

s
e
s
s
io

n
 I
D

h
e
a

d
e
r

e
x
te

n
s
io

n
s

a. the Licklider packet format

LTP

start variable-length fields

v
e
rs

io
n

fl
a
g
s

IP header IP options

(if any)

c
h
e
c
k
s
u
m

le
n
g
th

d
s
t
p
o
rt

s
rc

 p
o
rt

s
rc

 a
d
d
re

s
s

d
s
t
a
d
d
re

s
s

p
ro

t

le
n
g
th

le
n
g
th

UDP

hdr
b. Licklider over UDP

Figure 16. LTP packet format

These frames are either ‘red’ (error-free – acknowledged,

retransmitted, and one would hope checksummed for

integrity) or optional ‘green’ (errors permitted,

unacknowledged, unretransmitted) packets. Red and green

packets can be mixed in a transmission. LTP is considered a

reliable transport protocol, in that it implements a negative

ARQ mechanism. However, the optional green error-

permitting packets are not repeated at all if lost. So, a green

error-carrying packet with possible permitted bit errors may be

turned into a full packet-sized erasure in the data stream if:

a. the green packet is lost in transmission, as it will not be

repeated by the sender.

b. the LTP packet is carried by a protocol, such as UDP, that

implements its own checksum covering its payload (in this

case, the LTP packet), leading to rejection of the packet

contents before LTP sees them. This is seen as a loss in

transmission, and LTP does not resend green packets.

We have avoided using the term ‘partial reliability’ seen in

the LTP specification, as that conflates delivery of errored

content with use of delivery mechanisms with limited

persistence. Anything that is partially reliable is, in fact,

unreliable; reliability has to be carefully bounded. (SCTP uses

‘partial reliability’ to denote specified ARQ repeat persistence

for checksummed payloads.)

Unlike the combination of Saratoga/UDP-Lite, when

transferring error-tolerant payloads, no header fields in LTP

green packets are checksummed, trustworthy, or robust. A

lower-layer checksum in a frame carrying the LTP packet is

desirable, because the LTP packet format does not specify its

own internal frame structure checking, and, unlike many of the

other protocols described here, is clearly not robust or error-

rejecting. Using a lower-layer protocol checksum to protect

headers and extensions and make the LTP frame robust will

also support red “reliable” packets. Yet a full lower-layer

checksum limits the utility of green packets and prevents

delivery of errored content to the application; this is a paradox.

An optional authentication extension is described for LTP in

the Licklider extensions draft [35]. This can be used to check

the LTP packet for errors and data integrity, independently of

checksums at lower layers. The need for checksum-style

protection is recognized with inclusion of the optional NULL

ciphersuite, which has a hardcoded key and does not require

8 of 10

implementation of a key management framework to protect

the LTP segment. This authentication extension can help

protect red packets, but does not help varying payloads of

‘error-tolerant’ green packets. In order to deliver errored bits,

the payloads of green packets must forego both authentication

and lower-layer checksums.

Also of interest is that the red/green packet handling requires

considerable detail to explain in the LTP specification,

whereas the Saratoga specification is far shorter and simpler

due to its layering on top of the pre-existing UDP-Lite. We

believe that this kind of component re-use is desirable to

prevent the propagation of configuration complexity

throughout the protocol stack and aids maintainability LTP is

intended to be used directly over a variety of link protocols –

although engineering support for LTP in each link protocol

can involve expensive development on a case-by-case basis,

and individual lower-layer protocols provide differing degrees

of bit and frame error detection and correction, leading to

different levels of reliability Development of LTP over UDP

has been cheaper and easier in the near-term. The resulting

protocol stacks are shown in Fig. 17.

UDP provides the simple checksum protection that LTP

lacks, leading to a stack that follows Fig. 1(c). When LTP is

used directly over a link layer without the optional

authentication extension, there is no transport-level protection.

This follows Fig 1(d), which is dangerous to data integrity.

If the bundle or file included internal checksum protection

for an end-to-end check, lack of protection lower in the stack

would not matter, as errors would be caught by the end-to-end

check. However, just as the only way to gain internal checking

for LTP is to use its optional security framework with the

authentication extension, the only way to gain protection for

bundles is to use the Bundle Security framework [36], with

data integrity being a welcome side-effect of that. Key

management becomes necessary because the Bundle Security

framework provides no unkeyed authentication or integrity

primitives. Lack of any internal bundle protection is also

problematic for the proposed bundle-in-bundle encapsulation

[37]. We have proposed an integrity checksum for bundles

[38].

bundle/file segment

LTP payload

header UDP payload

header

header link frame payload trailer

header IPv4 payload

extensions

a. LTP as developed over UDP

bundle/file segment

LTP payloadheader

header link frame payload trailer

extensions

b. LTP directly over a link protocol

Figure 17. LTP use in a protocol stack

application data

transport payload

header network packet payload

header

header link frame payload trailer

Figure 18. An error-tolerant protocol stack with robust

header checks, but no lower-layer payload checks

Like Saratoga, LTP could be adopted to use UDP-Lite on

mixed error-tolerant and error-intolerant content. This would

require per-packet adjustment of the requested partial

checksum coverage and packet size to match boundaries

between red and green content types, and either segmentation

in order to also provide checksum coverage of trailers used by

the LTP extensions, or a rethinking of the trailer concept.

VI. A PROTOCOL STACK THAT DELIVERS ERRORED CONTENT

We can envisage a deliberately-engineered protocol stack of

frame formats supporting delivery of errored content, where

each frame checks only its own (and, like TCP/UDP, possibly

selected lower-layer) header fields to ensure that its own

headers are robust, while passing the possibly-errored

payloads up to the transport layer and application for final

checks and rejection This has been shown conceptually in Fig.

18.

There are no full payload checks, in order to prevent error

rejection from occurring before the application sees the data.

All headers are checked, to ensure that payload lengths are

correct and frames reach the correct destination.

We can summarize the conditions needed for successful

delivery of errored content in Fig. 19, which differs somewhat

from the full payload protection discussed with Figure 1.

Fig. 19 shows that reduced payload error checking

throughout the protocol stack is a necessity for delivery of

errored data to work; if all links in the path have payload

checksums, channel-induced errors will never reach the

transport layer (although the transport layer can still see errors

introduced by intermediate processing).

Across a path of multiple links in series, either wired and

relatively error-free, or wireless with channel-induced errors,

it would be possible to use both strong link payload

checksums on the wired links and header-only checksums on

the wireless links, and still deliver errored content to the

transport protocol in the endhost.

The goal of the levels of protection shown in Fig. 1 was to

prevent any errors and ensure overall reliability. Here, the

goal, when appropriate for the application, is to control where

errors are permitted (the payload), and to protect against errors

elsewhere (the important header information).

Use of security in any layer can prevent these errors from

reaching the application. The cause of corruption of a secured

payload cannot be determined, as errors cannot be

distinguished from an attack attempt.

9 of 10

data link/MAC

application

network

data link/MAC

transport

application

transport

network

a. Delivery of errored payload data is possible

data link/MAC

application

data link/MAC

network

transport

application

transport

network

b. Delivery of errored content is prevented; payloads with

errors introduced by the physical layer are rejected by

lower layers before reaching a layer that can handle them.

frame payload is always covered by checksum

no payload checksum

payload errors may be permitted

Figure 19. Errored delivery through protocol stacks

Delivery of content where errors have been introduced by

channel noise can be permitted by some recent new wireless

MAC protocols. We give two examples here

A. IEEE 802.16

The 802.16 Wireless Metropolitan Area Network standard is

a link layer protocol used within the WiMax and WiBro

frameworks [39].

802.16 includes a link-layer frame CRC and supports

reliable transmission via ARQ persistence, but also supports

disabling both this CRC and ARQ retransmissions on a per-

connection basis.

B. UMTS

Data frames in the Universal Mobile Telephone System

(UMTS) link layer have two separately-computed CRC fields,

one covering the frame header, and another covering the frame

payload [1].

Inclusion and verification of the header CRC is mandatory,

while the payload CRC is only optionally generated and

verified. Thus, UMTS provides a robust frame format, and

also allows for errored delivery.

VII. CONCLUSIONS

We have described and analyzed checksum coverage for

protocol stacks, and have examined recently-designed

protocols intended for delivery of errored data to applications.

We have shown that, to support delivery of errored data to

applications that would benefit from it, a minimal approach to

error-checking of payloads must be implemented throughout

the protocol stack. For delivery of errored content to work,

these protocols must be used over a stack that does not fully

checksum its payloads, which is not current common practice.

While DCCP, UDP-Lite and Saratoga/UDP-Lite require a

checksum-free lower stack to be able to receive and permit

any errored content, these protocols are robust and can be

trusted, as their packet headers are always covered by a

checksum. We find a paradox in LTP, in that packets that

permit errors (the ‘green packets’) require a lower stack free

of payload checksums – yet LTP itself is the weakest of the

four error-tolerant protocols examined, in that it does not

attempt to protect the integrity of its own headers, extension

data, or payloads – i.e. that LTP is not internally robust by

design. LTP needs protection from lower-layer checksums to

help prevent errors, or must use the optional authentication

header in its security framework in order to ensure that its

format can be delivered without errors and decoded reliably.

Specifying use of LTP over UDP-Lite may help resolve the

paradox of LTP green packets. The lack of header and payload

integrity in the DTN bundle format specification, requiring

implementation of the security framework to get

authentication, is also of concern, as it can be impractical or

unworkable to implement a full security framework with key

management in many realistic scenarios.

VIII. ACKNOWLEDGMENTS

We thank Kevin Fall and the IRTF Delay-Tolerant

Networking Research Group for the discussions that led to

recognition of the need for this paper.

10 of 10

We thank Cathryn Peoples for her comments on drafts of

this paper.

REFERENCES

[1] J. Saltzer, D. Reed and D. Clark, “End-to-End Arguments in

System Design,” ACM Transactions in Computer Systems, pp.

277-288, November 1984.

[2] C. Partridge and L. Jolitz, “Applications with UDP checksum

disabled”, emails to the end2end-interest mailing list,

http://www.postel.org/pipermail/end2end-interest/2002-March/,

March 2002.

[3] J. Stone, M. Greenwald, J. Hughes, and C. Partridge,

“Performance of checksums and CRCs over real data,” IEEE

Transactions on Networks, vol. 6 issue 5, pp. 529-543, October

1998.

[4] J. Stone and C. Partridge, “When the CRC and TCP checksum

disagree,” Proceedings of ACM Sigcomm, pp. 309-319,

September 2000.

[5] ISO13239 High-level data link control (HDLC) procedures.

[6] W. Simpson, “The Point-to-Point Protocol,” IETF RFC 1661,

July 1994.

[7] W. Simpson, “PPP in HDLC-like framing,” IETF RFC 1661,

July 1994.

[8] International Telecommunication Union, ISDN Data Link

Layer Specification for Frame Mode Bearer Services, ITU-T

Recommendation Q.922, 1992.

[9] International Telecommunication Union, "B-ISDN ATM

Adaptation Layer (AAL) Specification", ITU-T

Recommendation I.363, 1993.

[10] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label

Switching Architecture”, IETF RFC 3031, January 2001.

[11] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina,

“Generic Routing Encapsulation”, IETF RFC 2784, March

2000.

[12] J. Postel (ed.), “Internet Protocol – DARPA Internet Program

Protocol Specification”, IETF RFC 791, September 1981.

[13] A. Rijsinghani. “Computation of the Internet Checksum

via Incremental Update,” IETF RFC 1624, May 1994.

[14] J. Touch and B. Parham, “Implementing the Internet Checksum

in Hardware,” IETF RFC 1936, April 1996.

[15] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)

Specification”, IETF RFC 2460, December 1998.

[16] A. Conta and S. Deering, “Generic Packet Tunneling in IPv6

Specification”, IETF RFC 2473, December 1998.

[17] J. Postel, “Transmission Control Protocol,” IETF RFC 793,

September 1981.

[18] J. Postel, “User Datagram Protocol,” IETF RFC 768, August

1980.

[19] J. Zweig and C. Partridge, “TCP alternate checksum options,”

IETF RFC 1146, March 1990.

[20] R. Stewart et al., “Stream Control Transmission Protocol,”

IETF RFC 2960, October 2000.

[21] J. Stone, R. Stewart and D. Otis, “Stream Control Transmission

Protocol (SCTP) Checksum Change,” IETF RFC 3309,

September 2002.

[22] R. Stewart et al., “Stream Control Transmission Protocol

(SCTP) Partial Reliability Extension,” IETF RFC3528, May

2004.

[23] K. Hogie, E. Criscuolo and R. Parise, “Using standard Internet

Protocols and applications in space,” Computer Networks, vol.

47 no. 5, pp. 603-650, April 2005.

[24] M. Watson, “Forward Error Correction (FEC) Framework”,

work in progress as an internet-draft, February 2007.

[25] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and

J. Crowcroft, “Forward Error Correction (FEC) Building

Block,” IETF RFC 3452, December 2002.

[26] E. Kohler, M. Handley and S. Floyd, “Datagram Congestion

Control Protocol (DCCP),” IETF RFC 4340, March 2006.

[27] E. Kohler, M. Handley and S. Floyd, “Designing DCCP:

Congestion Control Without Reliability,” Proceedings of ACM

Sigcomm, pp. 27-38, September 2006.

[28] L. A Larzon, M. Degermark, et al., “The Lightweight User

Datagram Protocol (UDP-Lite),” IETF RFC 3828, July 2004.

[29] L. Wood, W. Eddy, W. Ivancic, J. McKim and C. Jackson,

“Saratoga: a Delay-Tolerant Networking convergence layer

with efficient link utilization,” Third International Workshop

on Satellite and Space Communications (IWSSC ’07),

September 2007.

[30] L. Wood, W. Eddy, W. Ivancic, et al., “Saratoga: A

Convergence Layer for Delay Tolerant Network,” work in

progress as an internet-draft, July 2007.

[31] V. Cerf, S. Burleigh et al., “Delay Tolerant Network

Architecture,” IETF RFC 4838, April 2007.

[32] K. Scott, K. and S. Burleigh, “Bundle Protocol Specification,”

work in progress as an IRTF internet-draft, July 2007.

[33] M. Ramadas S. Burleigh and S. Farrell, “Licklider

Transmission Protocol – Specification,” work in progress as an

IRTF internet-draft, April 2007.

[34] W. Eddy, “Using Self-Delimiting Numeric Values in

Protocols,” work in progress as an internet-draft, July 2007.

[35] S. Farrell, M. Ramadas and S. Burleigh, “Licklider

Transmission Protocol – Extensions,” work in progress as an

IRTF internet-draft, April 2007.

[36] S. Symington, S. Farrell, and H. Weiss, “Bundle Security

Protocol Specification”, work in progress as an internet-draft,

April 2007.

[37] S. Symington, R. Durst and K. Scott, “Delay-Tolerant

Networking Bundle-in-Bundle Encapsulation,” work in

progress as an IRTF internet-draft, May 2007.

[38] W. Eddy and L. Wood, “The DTN Bundle Protocol Payload

Checksum Block,” work in progress as an internet-draft, July

2007.

[39] IEEE 802 LAN/MAN Standards Committee, “Part 16: Air

Interface for Fixed and Mobile Broadband Wireless Access

Systems Amendment 2: Physical and Medium Access Control

Layers for Combined Fixed and Mobile Operation in Licensed

Bands and Corrigendum 1”, IEEE Std 802.16e-2005 and IEEE

Std 802.16-2004/Cor1-2005, February 2006.

[40] 3rd Generation Partnership Project (3GPP) Technical

Specification Group Radio Access Network (TSG RAN),

“UTRAN lub Interface User Plane Protocols for Common

Transport Channel Data Streams”, 3GPP TS 25.435, V4.4.0,

March 2002.

