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Abstract—We examine how the overall reliability of network 

protocol stacks is affected by the use of error-detecting 

checksums and Cyclic Redundancy Checks at each protocol 

layer. How these checksums cover their frames and payloads can 

affect the reliability of the rest of the stack, particularly higher 

layers, and the resulting delivery of data. We then apply insights 

gained to a comparison of new protocols promising delivery of 

packets with payload errors, to determine how well those 

protocols achieve that goal when used in realistic stacks. 

Index Terms—checksum, CRC, partial checksum, partial 

reliability, Internet, IP, TCP, UDP, DCCP, UDP-Lite, Saratoga, 

Licklider, LTP, DTN, delay-tolerant networking, bundles. 

I. INTRODUCTION 

Reliability in the processing and delivery of received data is 

fundamental to packet networking. By this, we mean being 

able to trust the data in the payloads of the packets that you 

receive, and being able to trust the structure of the very 

packets and frames so that you can decode them correctly and 

get at the payload data they hold. This is distinct from 

(although supplemental to and a prerequisite for) the notion of 

delivery reliability from acknowledgement and retransmission 

protocols. Even when applications can tolerate errors in the 

payload data they receive, delivered by the protocols discussed 

in section V, they must be able to rely on the structure and 

headers of the packets and frames delivering that content. 

The well-known end-to-end principle [1] describes the need 

for checks on data delivery at the highest layer in the protocol 

stack, in order to be able to recognize and recover from errors 

introduced in transmission or in the functionality at all lower 

layers. We summarize the normal application of this principle 

to the five-layer protocol stack in Fig. 1, where checksum 

protection of frames and their payloads is shown for each 

layer. The physical layer often protects against channel-

induced errors with symbol coding, but does not normally use 

checksums to reject errored frames. Framing bits is normally a 

function in higher layers. 

In Fig. 1, the scenarios shown in the protocol stacks used in 

(a), with an end-to-end checksum at the highest layer, and (b), 

with checksums at all layers, are considered reliable. A 

ramification of the end-to-end principle is that the added 

lower-layer checks in (b) may be unnecessary, and that overall 

performance may be increased in individual cases by their 

omission, although that is not universally so. 
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a. Minimal reliability with an end-to-end checksum. 
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b. Still end-to-end, but redundancy in checking may be 

unnecessary. Multiple ARQ control loops at different 

layers may lead to performance inefficiencies. 
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c. Common practice, where an application colocated with 

transport on the same processor relies on reliability in 

transport, e.g. a web browser and HTTP depend on TCP’s 

reliability properties. Potentially affected by bugs in 

transport implementations or weaknesses in transport 

checksums. 
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d. Shown to introduce errors in data sent to the application. 

checksummed frame no checksum  
Figure 1: The end-to-end principle across protocol stacks 
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Omitting these lower-layer checks may be detrimental to 

performance, as these checks often trigger short-delay 

localized error recovery methods and prevent higher-latency 

end-to-end recovery from being necessary. An example of this 

is a short-delay ‘last wireless hop’ in a wireless hotspot being 

used for Internet communication.  

ARQ locally across the wireless hop to repeat errored or lost 

frames is far faster than end-to-end recovery across the longer 

Internet path using a higher-layer protocol; TCP can be 

thought of as a much slower ARQ protocol over a longer path. 

Fig. 1(c) is how the end-to-end principle is commonly 

applied in practice. This assumes that data is delivered 

between application and transport layer correctly. An overall 

checksum of data at the application would add protection, 

especially considering the relative weakness of commonly-

used transport-layer checksums, and provide the ability to 

check reassembly of transport packets into a file. However, as 

with HTTP or FTP transfers, this is often not done. In practice, 

the link-layer CRCs are usually stronger than the transport-

layer checksum, protecting against channel noise as an 

obvious source of errrors. Putting the strongest checksum 

highest in the stack would make the most sense for overall 

end-to-end reliability. 

Fig. 1(d) is widely recognized as prone to data corruption. 

Examples of this configuration in practice include disabling 

IPv4 UDP checksums without a higher-level error check in 

place. This has led to subtle, hard-to-detect, corruption of files 

stored in network filesystems [2]. 

II. TYPES OF CHECKSUMS 

The types and strengths of checksums vary, from simple 16-

bit one’s-complement checks that will not detect swapped 

words, through Fletcher, Adler, and other checksums, and up 

to strong CRCs, and even stronger cryptographic hash 

functions. 

This paper is primarily concerned with whether a data unit’s 

header and/or payload have any internal protection against 

errors via checksum coverage, rather than with the relative 

strengths and weaknesses of the particular checksum used. 

For more detailed discussion of strengths and weaknesses of 

checksums and CRCs, see Stone’s work, that also clearly 

motivates the need for end-to-end checksums that can detect 

errors in intermediate processing that even the use of strong 

link-frame checksums cannot detect [3][4]. 

III. TERMINOLOGY 

To be able to describe the uses of checksums in protocols, 

we must first define some terminology for the concepts we 

talk about. We discuss errors in content (delivery of content 

containing payload bit errors, where permitted because the 

application can tolerate errors) and reliable delivery (delivery 

of all packets, with resends of lost or too-corrupted packets). 

Errored reliable delivery, where bit errors in the content may 

be tolerated as long as the correct amount of (partially 

incorrect) data reaches the correct endpoint, is distinct from 

error-free reliable delivery, and these are in turn different from 

unreliable delivery, where packets may be lost and not resent. 

Applications that can benefit from delivery of errored 

content include some streaming audio and video codecs, 

where the user experience is degraded less by a small number 

of bit errors in a complete, continuous, stream than by an 

entirely erased frame that makes the stream discontinuous. 

We are careful to distinguish between permitting errors in 

content or payload data, which, if tolerated, can allow the 

payload to be passed up to the next protocol layer to decode 

and decide whether the error can be coped with, and errors in 

the frame format, which should be detected and protected 

against. A protocol that can detect and protect against errors in 

its own format and fields (regardless of whether its payload is 

protected or not) is said to have a robust format. Being robust 

is desirable; more robustness of important header fields can by 

given by a stronger checksum. A frame that protects against 

errors in payload and header fields is error-rejecting. We talk 

of checksums giving protection of frames against errors when 

error rejection takes place and ‘bad’ errored frames are 

discarded. 

IV. SOME EXAMPLES OF CHECKSUM COVERAGE 

We examine checksum coverage and protection in common 

communication protocols used in the link layer and above. 

A. Ethernet 

Ethernet frames include a 32-bit Cyclic Redundancy Check 

(CRC) in the frame trailer, covering the header and payload as 

a contiguous whole.  
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Figure 2. Ethernet Type II frame 

B. HDLC, PPP and Frame Relay 

High Level Data Link Control (HDLC) frames [5], which 

are delineated by start and end flags, include a 16- or 32-bit 

CRC or Frame Check Sequence (FCS) in the frame trailer, 

covering both the header and the payload. The Point-to-Point 

serial Protocol (PPP) [6][7] and Frame Relay [8] are similar 

overall to HDLC, with trailing checksums, although header 

fields differ between them. 
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Figure 3. Typical HDLC frame layout 

C. ATM and the AAL layers 

The ATM Adaptation Layer 5, AAL5, the most common of 

the ATM adaptation layers [9] , is used to carry other protocol 

frames. A 32-bit CRC covers the frame and ends the trailer. 

payload C
R

C

le
n
g
th

p
a

d
d
in

g

 
Figure 4. ATM Adaption Layer 5 (AAL5) frame 
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Figure 5. 53 octet ATM cell 

 

ATM cells can be used to carry parts of ATM frames. The 

ATM cell has minimal header protection and robustness with 

the Header Error Control (HEC) octet, which is an 8-bit CRC 

of the previous 4 header octets. 

Payload checksums are not computed across individual 

ATM cells, as this would be computationally and spatially 

prohibitive, as well as unnecessary for carrying some 

applications (e.g. uncompressed digitized voice telephony). 

Instead, checksum protection is left to the higher AAL layer. 

D. Multi-Protocol Label Switching 

Multi-Protocol Label Switching (MPLS) is used extensively 

to enable efficient forwarding, short failure recovery times, 

and traffic engineering [8]. MPLS adds one or more 

independent 32-bit headers (called labels) to the front of a 

payload for fast switching and tunneling. 

The MPLS label stack does not include any internal 

checksums, and so relies on lower-layer coverage. The 

indication that the stack is ending and the payload is beginning 

is a single-bit flag set in the last label; corruption of this flag in 

any label would be problematic, and could cause unpredictable 

propagation of incorrectly framed payloads until stopped by 

some other error condition. 
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Figure 6. MPLS label stack on front of payload 

E. Generic Routing Encapsulation 

Generic Routing Encapsulation (GRE) headers [11], used to 

tunnel packets, consist of a 32-bit header followed by an 

optional field that includes a one’s-complement checksum. 

This checksum covers both the GRE header and the payload. 

Often, only the first 32-bit word is present, making GRE 

headers reliant on lower layers for protection. 
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a. Common GRE use without options 
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b. GRE use with optional header including checksum 

Figure 7. GRE encapsulation 

F. Internet Protocol version 4 (IPv4) 

The IPv4 header [12] is robust, in that it contains an internal 

checksum covering just the IP header, including the IP header 

options, if any of those are present. This checksum is a simple 

and relatively weak 16-bit ones-complement checksum, which 

cannot detect changes in the header such as swapped words. 

We deliberately show the IPv4 options header in Fig. 8, even 

though it is very rarely used, in order to make the separate 

pseudo-header fields included in the TCP and UDP checksums 

more visible later. 

The length of the header and options, used by the checksum, 

is given by the Header Length (HL) field. One common 

criticism of the IPv4 header is that the checksum also covers 

the Time to Live (TTL) field, which was originally specified 

as a decreasing timer, but was implemented as a hop limit 

field in practice. This hop limit is decremented at each hop in 

the path, requiring the IP header checksum to be recomputed 

to cover the new hop count value [13][14]. This recomputation 

and possible injection of errors during the header modification 

process turns an intended end-to-end header checksum into a 

de-facto per-link header checksum, weakening it considerably. 

A header checksum that simply skipped the TTL octet would 

have avoided this problem; recomputing the header checksum 

at each hop, with the potential to introduce new errors, makes 

that checksum much less robust. 
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Figure 8. IPv4 header 

G. Internet Protocol version 6 (IPv6) 

The IPv6 header design [15] removes the header checksum 

entirely, relying on the TCP and UDP ‘pseudo-header’, 

discussed later, and on lower-layer frame checksums to 

provide a modicum of protection for the header. This makes 

Network Address Translation (NAT) of IPv6 headers easier. 

An IPv6 packet is not in itself internally robust – though a 

header checksum that did not cover the hop count, traffic 

class, and Explicit Congestion Notification fields would have 

avoided the per-hop checksum recomputation as easily as the 

complete omission of a checksum. 

A common IPv6 header is shown in Fig. 9. This diagram 

neglects jumbograms and the varying optional IPv6 header 

options, which are also not internally robust.  

The lack of a checksum in the IPv6 header is mitigated 

somewhat by the IPv6 specification requiring UDP to always 

use checksums when composed with IPv6 and including a 

pseudo-header construction and a checksum in ICMPv6, in 

that it helps to ensure that these particular upper layers’ data 

are being delivered to at least the correct destination node and 

upper layer protocol with a correct source address. However, 

this measure does not help with IP-in-IP tunneling [16], where 

IP headers are used without pseudo-header protection. Here, 

IPv4 tunneling has a clear robustness advantage over IPv6 

tunneling, due to the IPv4 header checksum. 
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Fig 9. IPv6 header 

H. TCP and UDP 

The Transmission Control Protocol, TCP [17], and User 

Datagram Protocol, UDP [18] protect their internal headers 

and their entire payloads with 16-bit one’s-complement 

checksums. (Alternate checksum methods for TCP have been 

specified [19].) 

These checksums also protect a number of IP header fields 

via the inclusion of a ‘pseudo-header’. Protecting the address 

and protocol fields provides a check that the TCP or UDP 

segment has been demultiplexed in the correct place, while 

including the packet’s length ensures that the payload is 

neither truncated nor extended. The UDP pseudo-header 

calculation relies on its own redundant packet length field, 

rather than using the IP header’s packet length field; this is 

discussed later in the context of UDP-Lite. 

IPv6 is more reliant on this pseudo-header protection than 

IPv4, thanks to removal of the header checksum that could 

have detected errors in the IPv6 header earlier in transit.  
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b. IPv4 UDP packet 
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c. IPv6 TCP packet 
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d. IPv6 UDP packet 

Figure 10. TCP and UDP packets 

UDP checksums are mandatory in IPv6 to provide this 

demultiplexing protection. Other transport protocols running 

directly over IPv6 should include a pseudo-header check. 

Although the UDP checksum can be turned off in IPv4 for 

performance reasons, doing so removes the demultiplexing 

check, and places more reliance on higher-level data checks. 

Turning off UDPv4 checksums is recognized as a bad idea [2]. 

I. Stream Control Transmission Protocol (SCTP) 

The Stream Control Transmission Protocol, SCTP, began as 

a way of transporting SS7 (Signalling System 7) telephony 

control information. SCTP can act as a replacement for TCP 

for reliable data delivery. SCTP includes support for a number 

of features that TCP lacks, including multihoming. SCTP 

originally included an Adler-32 packet checksum [20], but this 

was later changed to be CRC that is much stronger in that it 

detects more errors [21]. This CRC is roughly equivalent in 

strength to the Ethernet CRCs. Although SCTP is carried in IP 

just like TCP and UDP, it does not include a pseudo-header 

demultiplexing check. The verification tag, established when 

an SCTP connection is set up, provides an equivalent 

demultiplexing check, while individual payload chunks within 

the SCTP frame, which are padded out to multiple of four 

bytes, provide their own internal length fields. 

SCTP can permit “partial reliability” via setting a limit to 

ARQ repeat persistence on certain payload chunks [22]. This 

provides unreliable delivery of data – but all the data received 

is checksummed so that errored packets can be rejected, and 

delivery of errored data to applications is precluded by this 

behaviour. 
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Figure 11. SCTP packet format 

V. PROTOCOLS PERMITTING ERRORED CONTENT 

Occasionally, where an application and its data stream 

include a degree of redundancy or are resilient to errors in the 

received data, fully reliable payload delivery is considered 

unnecessary (and perhaps even undesirable) by the 

application.  

For instance, several errored bits within a single high-

definition television frame may only subtly or imperceptibly 

alter the video stream when viewed by a human, whereas 

either the delay in retransmitting that entire frame, or the 

deletion of that entire frame would be perceptible and degrade 

the viewing experience. 

Having the application accommodate errors in its received 

data can be particularly useful for: 

a. topologies with very long delays, where the added delay 

and jitter of occasional ARQ protocol resends is 

considered prohibitive, or even unnecessary and 

undesirable for real-time traffic such as Voice over IP. 

b. unidirectional links, where there is no way to request a 

frame be resent from the receiver end of the link. 

In these cases, data is often heavily forward-error-corrected 

(FEC’d) in the physical layer for broadcast, with the 
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expectation that the data should normally arrive correctly. 

Long-distance unidirectional links are considered common for 

deep-space probes, where a modified HDLC stream with ARQ 

disabled can be used effectively [23]. 

Where errored content can be tolerated, the system of 

redundant and overlapping checksums at each protocol layer 

defeats the performance goal of getting errored data to the 

application. Rather than allowing the application to determine 

that a couple of bits in the payload may be misset, and decide 

whether this affects the reliability of the delivered payload, an 

earlier lower-layer pass-or-fail checksum of its entire frame 

fails, causing the entire frame to be rejected before the 

application gets to see its payload. If a resend is not possible, 

this can turn a single-bit error into a packet-sized hole in the 

received datastream (i.e. an “erasure”). Although FEC erasure 

coding protocols [24][25] can be used to recover from 

transport-level errors without requiring ARQ resends, these 

protocols do have overheads in terms of network capacity 

used, trading ARQ resend latency for link capacity. 

We now describe four transport-layer protocols that permit 

delivery of errored payloads. These are DCCP, UDP-Lite, and 

two new protocols developed in the context of 

Delay/Disruption Tolerant Networking (DTN) – the Saratoga 

Transfer Protocol and the Licklider Transmission protocol 

(LTP). 

A. Datagram Congestion Control Protocol ( DCCP) 

The Datagram Congestion Control Protocol, DCCP [26][27] 

implements UDP-like unreliable delivery with flexible 

congestion control options. Fig. 12 illustrates a DCCP packet 

using a generic header with a long sequence number(short 

sequence numbers are also possible in DCCP).  

Along with a 16-bit checksum in its header, DCCP includes 

a checksum coverage field. 
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a. DCCP with full payload protection 
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b. DCCP with optional strong CRC also covering payload 
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c. DCCP with partial protection covering headers only 
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d. DCCP partial protection extending to first part of payload 

Figure 12. DCCP packet format 

When the checksum coverage field is zero, the checksum 

covers the pseudo-header and all packet contents. When the 

checksum coverage field contains a value x for which 0<x<16, 

the checksum covers the DCCP header, options, pseudo-

header and the first 4(x-1) octets of the payload. This means 

that, when the payload is partially unprotected, a maximum of 

the first 56 octets of the payload can be reliably sent to cover 

internal payload headers. 

DCCP may also include a six-byte option containing a 32-bit 

CRC, calculated the same way as the SCTP CRC, covering the 

application data. This optional CRC is itself in turn covered by 

the header checksum. 

B. UDP-Lite 

The UDP-Lite transport protocol [28] was originally 

developed as an after-the-fact modification of the UDP 

protocol, taking advantage of the redundant packet length 

fields present in both the IP header and the UDP header. The 

‘redundant’ UDP header’s packet length field is turned into an 

indication of how much of the packet length is checksummed. 

When the length field matches the IP header’s length field, 

UDP-Lite behaves just as UDP does, and is resistant to errors. 

When the UDP-Lite length is less that the total packet 

length, only part of the packet is protected. Thus, like DCCP, 

UDP-Lite can permit delivery of errored content to 

applications, which can be useful for e.g. VoIP data. UDP-

Lite’s variable payload coverage is more flexible and fine-

grained that that of DCCP. 

Unlike UDP, UDP-Lite includes the IP header’s packet 

length field in its pseudo-header check. The UDP-Lite length 

should always be sufficient to provide checksum coverage of 

the IP pseudo-header, UDP headers, and any other higher 

layer headers present, e.g. the headers of the Real-Time 

Protocol (RTP), or Saratoga, discussed later.  
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a. UDP-Lite with full protection, as UDP. 
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b. UDP-Lite with minimum robust header protection. 
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c. UDP-Lite with partial protection dictated by length field 

Figure 13. UDP-Lite variable coverage. 
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UDP-Lite was conceived as a ‘compatible upgrade’ to UDP, 

but was eventually given its own, separate, protocol number. 

This avoids any adverse impact on existing UDP 

implementations, which rely on the previous semantics of the 

UDP length field for the pseud-header check, rather than using 

the IP length field. 

 The ability of the payload-error-tolerant DCCP and UDP-

Lite to convey errored data to applications is predicated on 

DCCP or UDP-Lite first receiving that errored data at all from 

underlying layers in the network stack. 

If packets of either type are carried within a lower-layer link 

frame format that checks its payload and rejects errored 

frames, then errored data is unlikely to reach the transport 

protocol and the application. This means that UDP-Lite and 

DCCP are most useful in a protocol stack where only the 

transport provides a limited end-to-end reliability check, and 

lower layers only verify the integrity of their own framing 

headers, without mandatory attempts to verify payload 

integrity that would prevent useful payload data from reaching 

the transport layer and the application using it. 

In section IV we reviewed common link-layer protocols, 

which fully protect their payloads. DCCP and UDP-Lite’s 

error tolerance is of little use when run over these protocols, as 

the link checksums protect against a common form of error – 

channel noise. However, Stone points out corruption in 

delivered packets caused by other things than link errors [4]. 

This corruption can be due to bugs in intermediate processing 

in routers and interfaces, or due to memory corruption – single 

event upsets caused by radiation altering RAM contents 

without error correction coding to detect it are not unknown. 

This corruption is more likely to be in the payload or at the 

end of a packet (via truncation or packet contents being 

overwritten), simply because if the corruption was at the start 

of the packet, the packet would not be delivered to the right 

place. So, in tolerating errors in their payloads, DCCP and 

UDP-Lite are actually making errors in intermediate 

processing harder to detect. 

C. Using UDP-Lite: Saratoga 

Saratoga is a file-transfer transport protocol developed for 

high utilization of dedicated links [29][30].. Saratoga is 

intended for use in the scenarios where delay-tolerant 

networking (DTN) [31][32] is appropriate, where connectivity 

is sporadic and intermittent, and data is transferred hop-by-hop 

in a store-and-forward approach, rather than along a complete 

end-to-end path. As well as normal files, Saratoga can also 

carry streams of data and DTN bundles. 

Saratoga uses a negative ARQ mechanism to detect and 

compensate for packet loss, when desired, and can disable this 

mechanism within receivers if it is not needed for an 

application. 

Saratoga presumes that either IPv4 or IPv6 is in use on 

individual links within these delay tolerant networks, so it is 

designed to run over UDP. This permits Saratoga to also take 

advantage of the very similar UDP-Lite, if an application 

prefers and its content to be transferred is error-tolerant. 

Saratoga thus inherits all of the advantages (fully variable 

partial coverage) and disadvantages (a weak one’s-

complement checksum) of UDP-Lite. Using UDP-Lite, 

Saratoga can deliver errored parts of particular streams, files, 

or bundles to the application if the sender thinks that that is 

appropriate for a particular piece of content. However, this 

errored data will only reach UDP-Lite, Saratoga and the 

higher application if it has not already been rejected by 

checksums at lower layers. Saratoga’s packet structure 

remains internally robust, thanks to its reliance on the 

UDP/UDP-Lite checksum for coverage. 

A UDP-Lite/Saratoga packet that is errored in its unchecked 

unprotected payload part will be passed up the stack and saved 

as part of a file or bundle. A UDP-Lite/Saratoga packet that is 

errored in the protected part – any protected payload part or 

the header information, which must be robust – can prompt an 

ARQ repeat request. Saratoga also implements an optional 

end-to-end MD5 integrity checksum over the entire transferred 

object, to provide assurance of the received and reassembled 

data. This checksum compensates for the weaker UDP 

transport checksums, and covers reassembly of the received 

packets. 

This high-level checksum option is useful when data must be 

transferred reliably end-to-end and the application does not 

have its own end-to-end check, (An application check is still 

better, as it covers errors in communication between Saratoga 

and the application, which Saratoga’s MD5 checksum can 

not.) The UDP/Lite checksum only covers a single Saratoga 

packet over a single hop between communicating neighbours.  

When transfers permitting errors are carried out with UDP-

Lite, this MD5 checksum can only indicate if there is a 

difference between what was sent and what was received in 

the complete object, not within individual datagrams 

comprising the object. 
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a. A-protected Saratoga payload using UDP or UDP-Lite. 
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b. Robust protected headers and unprotected payload, 

using UDP-Lite. 
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c. Saratoga with partial payload protection via UDP-Lite. 

Figure 14. Saratoga variable coverage 
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Figure 15. Saratoga use in the IP network stack 

 

Further content checking must be left to the application and 

its knowledge of the internal structure of the data transferred. 

Saratoga’s use in the IP network stack, with checksum 

protection for payloads is shown in Fig. 15. This use is similar 

to the conventional checksum protection in Fig. 1(c). 

D. The Licklider Transmission Protocol 

The Licklider (or ‘long-range’ / ‘long-haul’) Transmission 

Protocol (LTP) [33] is, like Saratoga, intended for carrying 

bundles in DTN scenarios. Although LTP places great 

emphasis on coping with very long propagation delays, both 

protocols share similar functionality in this regard. 

LTP is intended to be carried directly by a wide range of 

link-layer protocols, but has been prototyped over UDP for 

ease of development. 

The internal format of an LTP packet is quite complex by 

typical Internet protocol measures, containing a number of 

variable-length fields which contain variable-length numbers 

described in a format unique to LTP and DTN protocols 

(although related to some constructs in ASN.1) – the Self-

Delimiting Numeric Value, or SDNV [34]. This stems from a 

desire to aggressively conserve bits on highly-constrained data 

links.This complex specification makes the LTP packet format 

hard to draw. Our attempts to represent LTP packets are 

shown in Fig. 16. 

What is immediately obvious about this packet format is that 

it is not internally robust, as it does not include a checksum for 

either its payload or its various header fields, nor does it 

include any pseudoheader check that would ensure its contents 

are even being processed by the correct IP node. 

LTP can rely on the frame that carries it to provide error-

checking, as it does when carried over UDP. When LTP is 

carried directly within a single lower-layer frame, that frame’s 

error-checking may be sufficient; but if an LTP frame is 

segmented over the multiple frames of a lower layer and later 

reassembled, the individual lower layer checksums would not 

be sufficient to ensure that the LTP packet was correctly 

reassembled end-to-end. 

Somewhat like DCCP and Saratoga/UDP-Lite, LTP claims 

to permit carriage of ‘reliable’ and ‘partially reliable’ payloads 

– that is, error-free and permitted-error delivery of separate 

payloads within the LTP protocol. Unlike DCCP and UDP-

Lite, which can combine protected and unprotected payload 

content in one packet, these must be sent in separate LTP 

frames.  
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Figure 16. LTP packet format 

 
These frames are either ‘red’ (error-free – acknowledged, 

retransmitted, and one would hope checksummed for 

integrity) or optional ‘green’ (errors permitted, 

unacknowledged, unretransmitted) packets. Red and green 

packets can be mixed in a transmission. LTP is considered a 

reliable transport protocol, in that it implements a negative 

ARQ mechanism. However, the optional green error-

permitting packets are not repeated at all if lost. So, a green 

error-carrying packet with possible permitted bit errors may be 

turned into a full packet-sized erasure in the data stream if: 

a. the green packet is lost in transmission, as it will not be 

repeated by the sender. 

b. the LTP packet is carried by a protocol, such as UDP, that 

implements its own checksum covering its payload (in this 

case, the LTP packet), leading to rejection of the packet 

contents before LTP sees them. This is seen as a loss in 

transmission, and LTP does not resend green packets. 

We have avoided using the term ‘partial reliability’ seen in 

the LTP specification, as that conflates delivery of errored 

content with use of delivery mechanisms with limited 

persistence. Anything that is partially reliable is, in fact, 

unreliable; reliability has to be carefully bounded. (SCTP uses 

‘partial reliability’ to denote specified ARQ repeat persistence 

for checksummed payloads.) 

Unlike the combination of Saratoga/UDP-Lite, when 

transferring error-tolerant payloads, no header fields in LTP 

green packets are checksummed, trustworthy, or robust. A 

lower-layer checksum in a frame carrying the LTP packet is 

desirable, because the LTP packet format does not specify its 

own internal frame structure checking, and, unlike many of the 

other protocols described here, is clearly not robust or error-

rejecting. Using a lower-layer protocol checksum to protect 

headers and extensions and make the LTP frame robust will 

also support red “reliable” packets. Yet a full lower-layer 

checksum limits the utility of green packets and prevents 

delivery of errored content to the application; this is a paradox. 

An optional authentication extension is described for LTP in 

the Licklider extensions draft [35]. This can be used to check 

the LTP packet for errors and data integrity, independently of 

checksums at lower layers. The need for checksum-style 

protection is recognized with inclusion of the optional NULL 

ciphersuite, which has a hardcoded key and does not require 
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implementation of a key management framework to protect 

the LTP segment. This authentication extension can help 

protect red packets, but does not help varying payloads of 

‘error-tolerant’ green packets. In order to deliver errored bits, 

the payloads of green packets must forego both authentication 

and lower-layer checksums.  

Also of interest is that the red/green packet handling requires 

considerable detail to explain in the LTP specification, 

whereas the Saratoga specification is far shorter and simpler 

due to its layering on top of the pre-existing UDP-Lite. We 

believe that this kind of component re-use is desirable to 

prevent the propagation of configuration complexity 

throughout the protocol stack and aids maintainability LTP is 

intended to be used directly over a variety of link protocols – 

although engineering support for LTP in each link protocol 

can involve expensive development on a case-by-case basis, 

and individual lower-layer protocols provide differing degrees 

of bit and frame error detection and correction, leading to 

different levels of reliability Development of LTP over UDP 

has been cheaper and easier in the near-term. The resulting 

protocol stacks are shown in Fig. 17.  

UDP provides the simple checksum protection that LTP 

lacks, leading to a stack that follows Fig. 1(c). When LTP is 

used directly over a link layer without the optional 

authentication extension, there is no transport-level protection. 

This follows Fig 1(d), which is dangerous to data integrity. 

If the bundle or file included internal checksum protection 

for an end-to-end check, lack of protection lower in the stack 

would not matter, as errors would be caught by the end-to-end 

check. However, just as the only way to gain internal checking 

for LTP is to use its optional security framework with the 

authentication extension, the only way to gain protection for 

bundles is to use the Bundle Security framework [36], with 

data integrity being a welcome side-effect of that. Key 

management becomes necessary because the Bundle Security 

framework provides no unkeyed authentication or integrity 

primitives. Lack of any internal bundle protection is also 

problematic for the proposed bundle-in-bundle encapsulation 

[37]. We have proposed an integrity checksum for bundles 

[38]. 
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a. LTP as developed over UDP 
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Figure 17. LTP use in a protocol stack 
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Figure 18. An error-tolerant protocol stack with robust 

header checks, but no lower-layer payload checks 

 

Like Saratoga, LTP could be adopted to use UDP-Lite on 

mixed error-tolerant and error-intolerant content. This would 

require per-packet adjustment of the requested partial 

checksum coverage and packet size to match boundaries 

between red and green content types, and either segmentation 

in order to also provide checksum coverage of trailers used by 

the LTP extensions, or a rethinking of the trailer concept. 

VI. A PROTOCOL STACK THAT DELIVERS ERRORED CONTENT 

We can envisage a deliberately-engineered protocol stack of 

frame formats supporting delivery of errored content, where 

each frame checks only its own (and, like TCP/UDP, possibly 

selected lower-layer) header fields to ensure that its own 

headers are robust, while passing the possibly-errored 

payloads up to the transport layer and application for final 

checks and rejection This has been shown conceptually in Fig. 

18. 

There are no full payload checks, in order to prevent error 

rejection from occurring before the application sees the data. 

All headers are checked, to ensure that payload lengths are 

correct and frames reach the correct destination.  

We can summarize the conditions needed for successful 

delivery of errored content in Fig. 19, which differs somewhat 

from the full payload protection discussed with Figure 1. 

Fig. 19 shows that reduced payload error checking 

throughout the protocol stack is a necessity for delivery of 

errored data to work; if all links in the path have payload 

checksums, channel-induced errors will never reach the 

transport layer (although the transport layer can still see errors 

introduced by intermediate processing). 

Across a path of multiple links in series, either wired and 

relatively error-free, or wireless with channel-induced errors, 

it would be possible to use both strong link payload 

checksums on the wired links and header-only checksums on 

the wireless links, and still deliver errored content to the 

transport protocol in the endhost. 

The goal of the levels of protection shown in Fig. 1 was to 

prevent any errors and ensure overall reliability. Here, the 

goal, when appropriate for the application, is to control where 

errors are permitted (the payload), and to protect against errors 

elsewhere (the important header information). 

Use of security in any layer can prevent these errors from 

reaching the application. The cause of corruption of a secured 

payload cannot be determined, as errors cannot be 

distinguished from an attack attempt. 
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b. Delivery of errored content is prevented; payloads with 

errors introduced by the physical layer are rejected by 

lower layers before reaching a layer that can handle them. 
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no payload checksum

payload errors may be permitted

 
Figure 19. Errored delivery through protocol stacks  

Delivery of content where errors have been introduced by 

channel noise can be permitted by some recent new wireless 

MAC protocols. We give two examples here 

A. IEEE 802.16 

The 802.16 Wireless Metropolitan Area Network standard is 

a link layer protocol used within the WiMax and WiBro 

frameworks [39]. 

802.16 includes a link-layer frame CRC and supports 

reliable transmission via ARQ persistence, but also supports 

disabling both this CRC and ARQ retransmissions on a per-

connection basis. 

B. UMTS 

Data frames in the Universal Mobile Telephone System 

(UMTS) link layer have two separately-computed CRC fields, 

one covering the frame header, and another covering the frame 

payload [1]. 

Inclusion and verification of the header CRC is mandatory, 

while the payload CRC is only optionally generated and 

verified. Thus, UMTS provides a robust frame format, and 

also allows for errored delivery.  

VII. CONCLUSIONS 

We have described and analyzed checksum coverage for 

protocol stacks, and have examined recently-designed 

protocols intended for delivery of errored data to applications. 

We have shown that, to support delivery of errored data to 

applications that would benefit from it, a minimal approach to 

error-checking of payloads must be implemented throughout 

the protocol stack. For delivery of errored content to work, 

these protocols must be used over a stack that does not fully 

checksum its payloads, which is not current common practice.  

While DCCP, UDP-Lite and Saratoga/UDP-Lite require a 

checksum-free lower stack to be able to receive and permit 

any errored content, these protocols are robust and can be 

trusted, as their packet headers are always covered by a 

checksum. We find a paradox in LTP, in that packets that 

permit errors (the ‘green packets’) require a lower stack free 

of payload checksums – yet LTP itself is the weakest of the 

four error-tolerant protocols examined, in that it does not 

attempt to protect the integrity of its own headers, extension 

data, or payloads – i.e. that LTP is not internally robust by 

design. LTP needs protection from lower-layer checksums to 

help prevent errors, or must use the optional authentication 

header in its security framework in order to ensure that its 

format can be delivered without errors and decoded reliably. 

Specifying use of LTP over UDP-Lite may help resolve the 

paradox of LTP green packets. The lack of header and payload 

integrity in the DTN bundle format specification, requiring 

implementation of the security framework to get 

authentication, is also of concern, as it can be impractical or 

unworkable to implement a full security framework with key 

management in many realistic scenarios. 
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